
UNIVERSITAT JAUME I DE CASTELLÓ

E. S. DE TECNOLOGIA I CIENCIÈS EXPERIMENTALS

Performance and energy
optimization of the

iterative solution of
sparse linear systems on

multicore processors

Ph.D. Thesis

Presented by: Maria Barreda Vayá

Supervised by: José I. Aliaga Estellés

Enrique S. Quintana Ort́ı

Castelló de la Plana, March 2017

UNIVERSITAT JAUME I DE CASTELLÓ

E. S. DE TECNOLOGIA I CIENCIÈS EXPERIMENTALS

Performance and energy
optimization of the

iterative solution of
sparse linear systems on

multicore processors

Maria Barreda Vayá

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 State-of-the-art . 3

1.2.1 Direct Solvers . 3

1.2.2 Iterative Solvers . 5

1.2.3 Direct and Iterative Solvers . 6

1.2.4 Energy Optimization . 8

1.3 Objectives . 9

1.4 Structure of the Document . 10

2 Automatic Power-Performance Analysis Framework 11

2.1 Integrated Tools . 12

2.1.1 Instrumentation and visualization tools . 12

2.1.2 Advanced Configuration and Power Interface 16

2.2 The PMLib Framework . 17

2.2.1 Hardware power sampling devices . 19

2.2.2 The PMLib library . 19

2.2.3 Module to detect power-related states . 21

2.3 Enrichment of PMLib . 24

2.3.1 Running Average Power Limit (RAPL) . 24

2.3.2 NVIDIA Management Library (NVML) . 28

2.3.3 MIC Management Library (libmicmgmt) . 28

2.3.4 Comparison of power sampling interfaces . 29

2.4 Automatic Detection of Power Sinks . 32

2.4.1 Operation and implementation . 33

2.4.2 Examples . 34

2.5 Concluding Remarks . 39

3 Solution of Large Sparse Linear Systems and ILUPACK 41

3.1 Solving Sparse Linear Systems . 41

3.1.1 Classification of the solution methods . 42

3.1.2 The Conjugate Gradient method . 46

v

3.2 Preconditioned CG . 48

3.2.1 Introductory concepts of preconditioning . 48

3.2.2 Definition of PCG . 50

3.2.3 ILU Preconditioning Techniques . 50

3.3 ILUPACK . 68

3.3.1 Computation of the preconditioner . 68

3.3.2 Application of the preconditioner . 71

4 Exploiting Task-Parallelism in ILUPACK 73

4.1 Task-Level Concurrency in the PCG Method . 74

4.1.1 Nested dissection . 74

4.1.2 Computation of the preconditioner . 76

4.1.3 The iterative PCG solve . 80

4.2 Parallel Programming Models . 81

4.2.1 OpenMP . 83

4.2.2 OmpSs . 83

4.2.3 MPI . 84

4.3 Setup and Test Cases . 84

4.4 Leveraging Task-Parallelism with OmpSs . 85

4.4.1 Task-parallel implementation using OmpSs 86

4.4.2 Optimization and experimental results . 90

4.5 Exploiting Task-Parallelism with MPI + OmpSs . 93

4.5.1 Task-Parallel implementation with MPI+OmpSs 94

4.5.2 Experimental results . 96

4.6 Tuning the Task-Parallel ILUPACK on Many-core Architectures 99

4.6.1 OmpSs implementations . 99

4.6.2 MPI implementations . 101

4.6.3 Experimental results . 103

4.7 Concluding Remarks . 105

5 Characterization of Processor Architectures with ILUPACK PCG 109

5.1 Target Multicore Architectures . 109

5.1.1 Intel Xeon E5-2620 (sandy) . 110

5.1.2 ARMv7 Cortex-A15 (A15) . 110

5.1.3 ARM Cortex-A57 (A57) . 111

5.1.4 Intel Xeon E5-2603v3 (haswell) . 111

5.1.5 Intel Xeon Phi (xeon phi) . 112

5.1.6 General setup . 112

5.2 Characterization of sandy using ILUPACK PCG . 113

5.2.1 Performance . 114

5.2.2 Energy consumption . 116

5.3 Characterization of A15 using ILUPACK PCG . 118

5.3.1 Performance . 119

5.3.2 Energy consumption . 121

5.4 General Observations . 123

vi

6 Conclusions 127
6.1 Concluding Remarks and Main Contributions . 127

6.1.1 Automatic power-performance analysis framework 128
6.1.2 Task-parallel PCG method in ILUPACK . 128
6.1.3 ILUPACK for multicore . 129
6.1.4 Hybrid ILUPACK for clusters . 129
6.1.5 Tuning ILUPACK on manycore architectures 129
6.1.6 Characterizing the efficiency of multicore and manycore processors 130

6.2 Related Publications . 130
6.2.1 Directly-related publications . 130
6.2.2 Indirectly-related publications . 134

6.3 Open Research Lines . 135

vii

viii

List of Figures

1.1 Evolution of the processors during the last 40 years in the number of transistors,
single-thread performance, operating frequency, dissipated power, and number of
cores. [8] . 3

2.1 Paraver Internal Structure. 13

2.2 Processor power states [107]. 17

2.3 Interaction of PMLib and performance/visualization tracing tools with a parallel sci-
entific workload, producing traces on application performance and power dissipation
that become inputs to the visualization tool. 18

2.4 Information captured with the PMLib framework and visualized with Paraver: ap-
plication performance and power traces (top and bottom, respectively). 18

2.5 Single-node application system and sampling points for external and internal wattmeters. 20

2.6 Diagram of the communication between client (running a scientific application) and
the (PMLib) server. 21

2.7 Example of use of PMLib. 22

2.8 Example of performance and power traces captured by Extrae and PMLib frame-
work, visualized with Paraver. 23

2.9 Running Average Power Limit (RAPL) module implemented in the PMLib server. . 26

2.10 Example of use of RAPL directly from the code. 27

2.11 NVIDIA Management Library (NVML) module implemented in the PMLib server. . 29

2.12 Intel Xeon Phi Coprocessor Management Library Architecture for SCIF, sysfs and
Windows Management Instrumentation (WMI) Communication Channels. 30

2.13 Many Integrated Core (MIC) module implemented in the PMLib server. 31

2.14 Power profiles of the synthetic test consisting of interleaved calls to sleep and
cpuburn, obtained from RAPL+Model-Specific Register (MSR) at 100 samples/sec.
(top), and the National Instruments (NI) wattmeter at 1,000 samples/sec. (bottom). 32

2.15 Operation of the inspection tool to detect and report power sinks. 33

2.16 Performance (top), power (top-middle), C-states (bottom-middle) and discrepancies
(bottom) traces, visualized with Paraver, for the concurrent execution of ILUPACK. 35

2.17 Performance (top), power (top-middle), C-states (bottom-middle) and discrepancies
(bottom) traces, visualized with Paraver, for the power-aware concurrent execution
of ILUPACK. 37

ix

2.18 Performance (top), C-states (middle) and discrepancies (bottom) trace, visualized
with Paraver, for the concurrent execution of the LU factorization in libflame. . . 38

3.1 Algorithmic formulation of Conjugate Gradient (CG). Here, τmax is an upper bound
on the relative residual for the computed approximation to the solution. 48

3.2 Algorithmic formulation of Preconditioned Conjugate Gradient (PCG). Here, τmax

is an upper bound on the relative residual for the computed approximation to the
solution. 51

3.3 P pattern computed by the ILU(l) symbolic factorization for an example of a sparse
matrix and four different values of l. From left to right and from top to bottom: l =
0,1,2 and ∞. The non-zero element pattern of A is equal to the ILU(0) factorization
pattern. 57

3.4 Computational pattern of the Crout algorithm. 61

3.5 Updates carried out in the k-th column (left) and row (right) of A during the k-th
iteration of the Crout variant of the ILU factorization. 62

3.6 A step of the Crout variant of the preconditioner computation in ILUPACK. 70

3.7 ILUPACK multi-level factorization of five-point matrix arising from Laplace PDE
discretization. 70

4.1 Nested dissection reordering. In this example G(A) is partitioned into four indepen-
dent subgraphs. Colors are used to illustrate the correspondence between the blocks
of the permutation to be factorized, and the tasks in charge of their factorization
(nodes of the tree). 75

4.2 Dependency tree of the diagonal blocks. Task Tj is associated with block Ajj 77

4.3 Matrix decomposition and local submatrix associated to a single node of the task tree. 78

4.4 A step of the Crout variant of the parallel preconditioner computations. 79

4.5 Task (2, 1) computes its own matrix from the Schur complements resulting from the
local computations of its children nodes ((1,1) and (1,2)). 79

4.6 Algorithmic formulation of the PCG method taking into account the consistency of
the data structures. 82

4.7 Computational domain in 3D for mygeo3 problem (left) and benchmark matrices
resulting from several discretizations of the computational domain (right). The table
(right) presents, for each benchmark, the code, the initial mesh refinement level, the
number of additional refinements, the number of unknowns, the number of nonzero
elements in A, and the average number of nonzero elements in each row. 86

4.8 Trace of the preconditioner computation without and with priorities (top and bot-
tom, respectively) on the Intel Xeon E5-2670, using 16 cores/threads and a decom-
position of the sparse matrix into a tree with 32 leaves, for the A200 problem. 91

4.9 Trace of a single PCG iteration of the solve stage with unmerged and merged kernels
(top and bottom, respectively) on the Intel Xeon E5-2670, using 16 cores/threads
and a decomposition of the sparse matrix into a tree with 32 leaves, for the A200
problem. 91

4.10 Speed-ups attained with the data-flow ILUPACK method parallelized with OmpSs,
for the A200 problem. The left-hand side plots correspond to the computation of the
preconditioner and the right-hand side plots to the iterative PCG solve. 93

4.11 Error estimation via the A-norm and convergence rate for different number of leaves/-
tasks for the A200 problem. 94

4.12 Mapping of a DAG to 4 MPI ranks (R0–R3) with 2 OmpSs threads per rank. 96

x

4.13 Ratio of execution time per PCG iteration with respect to the MPI-only version for
the Laplace A400 problem for different configurations, using 1 leaf per core (left) and
2 leaves per core (right). 97

4.14 Ratio of execution time per PCG iteration with respect to the MPI-only version for
two instances of mygeo3 problem for different configurations, using 2 leaves per core. 98

4.15 Execution time per PCG iteration for the Laplace A400 problem. 98

4.16 Execution time per PCG iteration for different Laplace problems. 99

4.17 Example of code illustrating the nested parallelism implemented in ILUPACK. . . . 101

4.18 Examples of binding using different values of NANOS arguments. 102

4.19 Example of code implementing the NUMA-aware execution in ILUPACK. 102

4.20 Convergence speed of the task- and data-parallel solvers for matrices A126 (left)
and A171 (right). 106

5.1 sandy architecture. The original image is extracted from [3]. 110

5.2 ODROID-XU3 architecture. 111

5.3 Juno architecture. 111

5.4 haswell architecture. The original image is extracted from [1]. 112

5.5 xeon phi architecture. The original image is extracted from [4]. 112

5.6 Performance vs. frequency of the PCG solver in sandy using a TDG with 32 leaves.
The execution time is normalized with respect to that obtained with the lowest
frequency for each number of threads. 116

5.7 Performance vs. scalability of the PCG solver in sandy using a TDG with 32 leaves.
The experiments were run at the maximum frequency (2.0 GHz) for each number of
threads. 116

5.8 Energy consumption vs. frequency of the PCG solver in sandy using a TDG with
32 leaves. The energy is normalized with respect to that obtained with the lowest
frequency for each number of threads. 118

5.9 Power dissipation vs. frequency of the PCG solver in sandy using a TDG with
32 leaves. The power is normalized with respect to that obtained with the lowest
frequency for each number of threads. 118

5.10 Energy consumption vs. scalability of the PCG solver in sandy using a TDG with
32 leaves. The experiments were run at the optimal frequency (2.0 GHz) for each
number of threads. 119

5.11 Performance vs. frequency of the PCG solver on odroid using a Task Dependency
Graph (TDG) with 8 leaves. The execution time is normalized with respect to that
obtained with the lowest frequency for each number of threads. 120

5.12 Performance vs. scalability of the PCG solver in odroid using a TDG with 8 leaves.
The experiments were run at the optimal frequency (2.0 GHz) for each number of
threads. 120

5.13 Energy consumption vs. frequency of the PCG solver in odroid using a TDG with
8 leaves. The energy is normalized with respect to that obtained with the lowest
frequency for each number of threads. 122

5.14 Power dissipation vs. frequency of the PCG solver in odroid using a TDG with
8 leaves. The power is normalized with respect to that obtained with the lowest
frequency for each number of threads. 122

5.15 Energy consumption vs. scalability of the PCG solver in odroid using a TDG with
8 leaves. The experiments were run at the optimal frequency (0.8 GHz) for each
number of threads. 123

xi

5.16 Time and energy consumption for the execution of ILUPACK PCG in sandy. 123
5.17 Time and energy consumption for the execution of ILUPACK PCG in odroid. . . . 124
5.18 Time and energy consumption for the execution of ILUPACK PCG in juno. 124
5.19 Time and energy consumption for the execution of ILUPACK PCG in haswell. . . 124
5.20 Time and energy consumption for the execution of ILUPACK PCG in xeon phi. . . 124

xii

List of Tables

1.1 List of software based on direct solvers for the solution of sparse linear systems.
sym-pat denotes a problem with symmetric nonzero pattern but unsymmetric data
values. 4

1.2 List of software based on iterative solvers for the solution of sparse linear systems. . 5

1.3 List of software that combines direct and iterative solvers for the solution of sparse
linear systems. 7

2.1 Programming models and systems supported by Extrae. * Also available in con-
junction with Message Passing Interface (MPI). 14

2.2 Available processor power states (extracted from [184]). 16

2.3 RAPL MSR interfaces and RAPL domains. 25

2.4 Power measurements obtained from RAPL+MSR and the NI module using internal-
PMLib and external-PMLib respectively, with both daemons in simultaneous op-
eration. Column “RAPL freq.” indicates the sampling/rate of the internal-PMLib
daemon, while the rate for the external one was 1,000 samples/sec. 32

2.5 Power measurements obtained from the NI module using external-PMLib with only
that daemon in operation at a rate of 1,000 samples/sec. 32

2.6 Example of analytical summary of the performance, C-state and discrepancy traces
reported by the inspection tool. 37

4.1 Matrices employed in the experimental evaluation, where nz only accounts for the
non-zeros in the upper triangular part. 85

4.2 Contents of the dag data structure representing the nodes (tasks) and dependencies of
the DAG in Figure 4.2. Here, dag[0][j], dag[1][j], and dag[2][j], j = 0,1, . . . ,6,
contain, respectively, the values in the rows labeled as “left descendant id.”, “right
descendant id.”, and “ancestor”. The symbol “–” is used to indicate that the task
has no left/right descendents (i.e., it is a leave) or ancestor (for the root). 88

4.3 Number of cores (c) for the experimental evaluation on xeon phi and opteron.
The cases with 64 workers were not evaluated on xeon phi due to lack of enough
memory for the MPI implementations. 104

4.4 Speed-ups of the task-parallel OmpSs and MPI implementations of the precondi-
tioner computation and PCG solve in xeon phi for matrix A171. 104

xiii

4.5 Speed-ups of the task-parallel OmpSs and MPI implementations of the precondi-
tioner computation and PCG solve in opteron for matrix A318. NO and NA
denote respectively the NUMA-oblivious and NUMA-aware implementations of the
PCG solve. 105

5.1 VFS configurations (voltage-frequency pairs, in V and GHz, respectively) available
in the platforms. 113

5.2 Hardware specifications of the platforms. 113
5.3 Software specifications of the platforms. 114
5.4 Idle power (W) on the different platforms for the range of available frequency con-

figurations (described in Table 5.1). 114
5.5 Execution time (s) of the PCG solver on sandy using different number of threads

and leaves for the range of available frequencies. 115
5.6 Energy (KJ) consumed during the execution of the PCG solver in sandy using

different number of threads and leaves for the range of available frequencies. 117
5.7 Execution time (s) of the PCG solver on odroid using different number of threads

and leaves for the range of available frequencies. 120
5.8 Energy (J) consumed during the execution of the PCG solver in odroid using dif-

ferent number of threads and leaves for the range of available frequencies. 121

xiv

It always seems impossible until it is done.

Nelson Mandela

xvi

Summary

Large sparse systems of linear equations are ubiquitous problems in diverse scientific and en-
gineering applications and big-data analytics. The interest of these applications and the fact that
the solution of the linear system is usually a significant time-consuming stage has promoted the
design and high-performance implementation of numerous matrix storage formats, algorithms, and
libraries to efficiently tackle sparse instances of these linear algebra problems in general-purpose
processorss (GPPs), following the evolution of computer architectures.

High Performance Computing (HPC) architectures enable the solution of complex applications
by aggregating a number of multicore processors. As a consequence, developers face the challenge
of implementing parallel algorithms that efficiently exploit the concurrency of the hardware. Fur-
thermore, the advances in the number of transistors that can be integrated in a circuit have not
enjoyed a proportional reduction of the power dissipated by the CMOS technology, turning the
power wall into a crucial challenge that the HPC community needs to address. Unfortunately,
despite the importance of energy consumption, few software developers take it into account in their
implementations.

In this dissertation we target the solution of large sparse systems of linear equations using
preconditioned iterative methods based on Krylov subspaces. Specifically, we focus our efforts on
ILUPACK, a library that offers multi-level Incomplete LU (ILU) preconditioners for the effective
solution of sparse linear systems. The increase of the number of equations in these systems and
the introduction of new HPC architectures motivates us to develop a parallel version of ILUPACK
which optimizes both execution time and energy consumption on current multicore architectures
and clusters of nodes built from this type of technology. Thus, the main goal of this thesis is the
design, implementation and evaluation of parallel and energy-efficient iterative sparse linear system
solvers for multicore processors as well as recent manycore accelerators such as the Intel Xeon Phi.

To fulfill the general objective of the thesis, we optimize ILUPACK exploiting task parallelism
via the programming models underlying OmpSs, MPI and a combination of both. These implemen-
tations are also tuned for their execution on specialized architectures like Non-Uniform Memory
Access (NUMA) platforms or the Intel Xeon Phi. Finally, the energy efficiency of the solver is
evaluated in different multicore platforms, taking advantage of an automatic framework to detect
power sinks, also developed as part of this thesis.

xvii

xviii

Resumen

Los sistemas dispersos de ecuaciones lineales aparecen en numerosas aplicaciones cient́ıficas y de
ingenieŕıa aśı como en procesos de análisis que involucran grandes volúmenes de datos. El interés de
estas aplicaciones y el hecho de que la solución del sistema lineal sea, de manera habitual, una parte
costosa de su tratamiento ha promovido el diseño y las implementaciones de alto rendimiento de
formatos de almacenamiento de matrices, algoritmos y bibliotecas para tratar de manera eficiente
estos problemas de álgebra lineal en procesadores de propósito general, siguiendo la evolución de
las arquitecturas de computadores.

Las arquitecturas de alto rendimiento permiten la solución de aplicaciones complejas mediante la
utilización de varios procesadores multinúcleo. Como consecuencia, los desarrolladores se enfrentan
al reto de implementar algoritmos paralelos que exploten de manera eficaz la concurrencia del
hardware. Por otro lado, los avances en el número de transistores que pueden integrarse en un
circuito no han gozado de una reducción proporcional en la potencia disipada por la tecnoloǵıa
CMOS, postulando a la potencia como un problema fundamental que la comunidad que trabaja
en temas de computación de alto rendimiento debe afrontar. Desgraciadamente, a pesar de la
importancia del consumo energético, son pocos los programadores que tienen en cuenta este factor
en sus desarrollos de software.

En esta tesis doctoral abordamos la solución de sistemas dispersos de ecuaciones lineales utilizan-
do métodos iterativos precondicionados basados en subespacios de Krylov. En concreto, centramos
nuestros esfuerzos en ILUPACK, una biblioteca que implementa precondicionadores de tipo ILU
multinivel para la solución eficiente de sistemas lineales dispersos. El incremento en el número de
ecuaciones de estos sistemas, y la aparición de nuevas arquitecturas, motiva el desarrollo de una ver-
sión paralela de ILUPACK que optimice tanto el tiempo de ejecución como el consumo energético
en arquitecturas multinúcleo actuales y en clusters de nodos construidos a partir de esta tecnoloǵıa.
De manera general, el objetivo principal de la tesis doctoral es el diseño, implementación y evalua-
ción de resolutores paralelos energéticamente eficientes para sistemas lineales dispersos orientados
a procesadores multinúcleo aśı como aceleradores hardware como el Intel Xeon Phi.

Para lograr el objetivo general de la tesis doctoral, optimizamos ILUPACK aprovechando el
paralelismo de tareas del método mediante los modelos de programación subyacentes en OmpSs y
MPI. Estas implementaciónes están dirigidas asimismo a la ejecución sobre arquitecturas especiali-
zadas de tipo NUMA y el Intel Xeon Phi. Finalmente, la eficiencia energética de las implementacio-
nes resultantes se evalúan sobre diferentes arquitecturas multinúcleo, haciendo uso de un entorno
automático para detectar sumideros de potencia desarrollado en el marco de la tesis doctoral.

xix

xx

Agradecimientos

La tesis finalmente está llegando a su fin. Han sido cuatro años muy intensos, de trabajo
y esfuerzo, pero también de satisfacción y recompensa. En esta etapa de mi vida he afrontado
experiencias que nunca antes hubiera imaginado y que me han ayudado a mejorar, tanto a nivel
personal como profesional. Sin embargo, esto no hubiese sido posible sin el respaldo de las personas
que me han acompañado en cada paso de este camino. A todas ellas, quisiera expresar mi más
sincero agradecimiento.

A mis directores, José I. Aliaga Estellés y Enrique S. Quintana Ort́ı, ya que sin su colaboración
hoy no estaŕıa escribiendo estas ĺıneas. A José, por su dedicación, por su ayuda, por su constancia,
y su ánimo en mis malos momentos. A Enrique, por haber confiado en mı́ desde el primer momento,
por su apoyo, por ser una fuente infinita de conocimientos y un trabajador incansable.

A la Universitat Jaume I, Generalitat Valenciana y Comisión Europea por su soporte económico
durante estos cuatro años, y especialmente al Ministerio de Educación, Cultura y Deporte por la
financiación de esta investigación a través del programa FPU, sin la cual este trabajo no hubiese
sido posible.

Al Centro Nacional de Supercomputación de Barcelona (BSC) por permitirme utilizar su su-
percomputador MareNostrum en mi investigación. Especialmente, dar las gracias a Rosa M. Bad́ıa
y al personal investigador del BSC por su colaboración desinteresada.

A las personas del grupo HPC&A de la Universitat Jaume I y a las que en algún momento han
estado en él: Rafa M., José Manuel, Sergio B., Asun, Maribel, Juan Carlos, Germán L., Germán
F., Merche, Alfredo, Toni, Fran, Manel, Ruymán, Rafa R., José Antonio, Sandra, Sergio I., Héctor,
Adrián, Sisco, Sonia, Roćıo y Goran. Gracias a todos por vuestra colaboración y el buen ambiente
que hemos creado. No quisiera olvidarme de los técnicos del Departamento de Ingenieŕıa y Ciencias
de la Computación, Gustavo y Vicente. Gracias por vuestra ayuda y paciencia.

A los compañeros del Institut Computational Mathematics de la Technische Universität Brawnsch-
weig, especialmente a Matthias Bollhöfer, por ofrecerme la oportunidad de integrarme en su entorno
de trabajo y por su contribución en la tesis. Asimismo, me gustaŕıa dar las gracias por su hospita-
lidad a los compañeros del grupo Alpines de INRIA-Paris, y a Laura Grigori en particular.

A mis amigos y amigas, por estar a mi lado, servirme de distracción y apoyarme en todas mis
decisiones. Aunque no os lo parezca, me habéis ayudado mucho. Gracias!

xxi

A mi familia, y muy especialmente a mis padres, Tere y Paco, y a mi hermano Francisco. A
mis padres, gracias por darme la oportunidad de recibir la mejor educación, por su comprensión,
ayuda y respeto de cada una de mis decisiones, aśı como por estar ah́ı siempre, tanto en lo bueno
como en lo malo. A mi hermano, gracias por su optimismo, su apoyo y su generosidad.

A Alejandro, el mejor compañero que se puede tener. Gracias por su apoyo y cariño, por su
paciencia y comprensión, por su confianza en mı́, y en definitiva, por estar siempre a mi lado.

– ¡Gracias! · Gràcies! · Thanks! –

Castellón, diciembre de 2016.

xxii

CHAPTER 1

Introduction

1.1 Motivation

The efficient solution of large sparse systems of linear equations is a key problem arising in
many scientific and engineering applications and, more recently, in data analytics. On the one
hand, one of the most important engineering problems yielding to large sparse systems of equations
is the discretization of finite elements for Partial Differential Equations (PDEs). This problem
underlies, among others, the analysis of the resistance of concrete structures, the estimation of the
electrons’ orbit, the evaluation of the Earth’s gravitational field, the simulation of the behavior of
structural aircraft components, or the detection of occlusions in blood vessels. On the other hand,
the connection between sparse linear algebra and graph algorithms has turned the former into an
appealing means to mine the vast amount of information in social networks, and other data analytic
processes, such as web search engines, information retrieval, or the creation of economic models.
These examples are only a small fraction of the applications that involve sparse linear systems. In
addition, the solution of sparse linear systems has traditionally been the bottleneck in computer
simulations, and remains in that position today, when the use of 3D-models has increased the size
of the systems and the simulation time and energy consumption.

The interest of the afore-mentioned applications has led to the design and high-performance
implementation of numerous storage formats, algorithms, and libraries to efficiently solve sparse
linear algebra problems in GPPs, following the evolution of computer architectures.

In the early 2000s, the limitations of instruction-level parallelism and the increasing performance
gap between the processor and memory, among other factors, promoted the design and use of pro-
cessors composed of several cores, in order to improve the performance of the computers. Thus, in
2001 IBM released the first GPP that featured multiple processing cores on the same CMOS: the
IBM POWER4 processor [132, 139]. Ever since, multicore processors have become the mainstream
to improve the throughput for high-end computing. More than 15 years after the introduction of
this type of architectures, the performance gains delivered by each new chip generation maintain a
linear growth rate as Moore’s law, which states that the number of transistors in a dense integrated
circuit doubles approximately every two years, still appears to be valid. However, in order to keep
up with this conjecture during the last decade, the Very-Large-Scale Integration (VLSI) scaling
rules for processor design had to be dramatically changed. During this period, a different variety

1

CHAPTER 1. INTRODUCTION

of multicore processors have been developed: symmetric, asymmetric, dynamic, heterogeneous,
etc. Nowadays, the term multicore processor comprises two different approximations: on the one
hand, GPPs, as those developed by Intel, ARM or AMD; on the other hand, hardware accelerators
such as the Graphics Processing Units (GPUs) from NVIDIA and AMD/ATI, the Intel Xeon Phi,
Field-Programmable Gate Arrays (FPGAs), etc. All these HPC architectures enable the solution
of complex applications by aggregating a number of multicore processors. As a consequence, devel-
opers face the challenge of implementing parallel algorithms that efficiently exploit the concurrency
of the hardware, usually consisting of a large number of cores.

Unfortunately, the advances in the number of transistors that can be integrated in a circuit,
following Moore’s law [139], have not rendered a proportional reduction of the power dissipated by
the CMOS technology, leading to the end of Dennard’s scaling law [66]. This fact made necessary
the transition from complex-single core architectures, with high operating frequencies, to multicore
processors with moderate frequencies, and more recently, it has contributed to the adoption of the
hardware accelerators due to their favorable relation between power dissipation and computational
performance.

Nowadays, as we progress on the road to Exascale systems, the power wall stands as a crucial
challenge that the HPC community needs to address [53, 77], due to the inability to dissipate heat
in CMOS circuits operating at a high frequency [78, 81, 77]. Figure 1.1 illustrates this situation.
Although this plot shows a continuous increment in the number of cores, it also exhibits that,
in general, the operating frequency is sacrificed so that the dissipated power by the processor
does not overtake 150 W. Moreover, power consumption implies a high economic cost, around
a million of euros per MegaWatt (MW) and year. A simple calculation shows that an Exaflop
system, built from current hardware technology, would dissipate between 150 and 165 MWatts,
rendering it economically unfeasible [5, 7, 70, 78, 80, 92, 129]. In other words, even with the rate
of improvement in power efficiency enjoyed by supercomputers during the past few years [5], the
target power consumption of 20 MWatts for an Exascale computer will still be exceeded by a factor
of 8× by 2018–2020. Moreover, energy consumption results in carbon dioxide emission, a danger for
the environment and public health, and heat, which reduces the reliability and lifetime of hardware
components. Therefore, if we have to overcome the power barrier, a holistic power/energy-aware
approach is needed, in particular one that aims at developing more energy-efficient hardware as well
as energy-aware system software, communication and computational libraries, and applications.

Despite the importance of energy consumption, few software developers take it into account in
their implementations. In our view, a reasonable principle to develop energy-efficient software is
to put this metric on par with productivity and performance. At this point, it is worth reminding
that the energy consumption results from the product between execution time and (average) power
dissipation rate. Therefore, an increase of power (due, for example, to a change in the processor
frequency) can result in higher or lower energy consumption, depending on the variation of the
execution time.

In this dissertation we consider the solution of large sparse systems of linear equations using pre-
conditioned iterative methods based on Krylov subspaces. Concretely, we focus on the ILUPACK1

library, which provides multi-level ILU preconditioners for the effective solution of linear systems,
especially those arising from the discretization of PDEs. ILUPACK has been successfully applied to
several large-scale application problems, in particular, to the Anderson model of localization [171]
or the Helmholtz equation [48]. The increase of the number of equations in these systems and the
introduction of new HPC architectures motivated us to develop a parallel version of ILUPACK

1Available at http://ilupack.tu-bs.de.

2

http://ilupack.tu-bs.de

1.2. STATE-OF-THE-ART

Figure 1.1: Evolution of the processors during the last 40 years in the number of transistors, single-
thread performance, operating frequency, dissipated power, and number of cores. [8]

which optimizes both time and energy on current multicore architectures and clusters of nodes built
from this type of technology.

1.2 State-of-the-art

In this section we revisit some of the most relevant parallel software for solving sparse linear
systems. Although there is a vast variety of packages for this purpose, we focus on the most popular
parallel methods, grouping them into direct solvers, iterative solvers, and a mix of both. All the
methods in these collections are targeted to massively-parallel HPC computers. In addition, as the
energy consumption is an important issue that we consider in our research, at the end of this section
we revisit different energy optimization techniques which can be applied in scientific computing in
general and the solution of sparse linear systems in particular.

1.2.1 Direct Solvers

Let us consider a linear system of the form Ax = b where A ∈ Rn×n is a sparse matrix, b ∈ Rn
is the vector of independent terms, and x ∈ Rn is the sought after solution. Direct methods for
the solution of linear systems compute a decomposition of A into two triangular factors L and U ,
of the same dimension as A, so that A = LU . This transforms the initial problem into a simpler
one whose solution is easy to obtain. Later in the dissertation, we explain the intrinsics of these
methods. Table 1.1 lists different software packages for solving sparse linear systems using direct
methods, and we provide a short description of the most relevant ones next.

PaStiX

PaStiX [160, 101], developed by the Bacchus team from INRIA, is a multi-threaded library
for the solution of huge linear systems of equations. The solution of the system is computed

3

CHAPTER 1. INTRODUCTION

Name Types of matrices accepted Language

PaStiX SPD, unsymmetric C/Fortran

PARDISO Symmetric, unsymmetric C/C++/Fortran/Matlab

SuperLU Unsymmetric C

MUMPS SPD, symmetric and sym-pat C/Fortran/Matlab/Scilab

Table 1.1: List of software based on direct solvers for the solution of sparse linear systems. sym-pat
denotes a problem with symmetric nonzero pattern but unsymmetric data values.

using different methods depending on the matrix nature. For example, if the matrix is symmetric
positive definite (SPD), the Cholesky or Cholesky-Crout with or without numerical pivoting is
employed [88]. However, if the matrix is unsymmetric, it uses the LU decomposition with static
pivoting to solve the system.

This library solves the system following a sequence of steps. First it reorders the unknowns in
order to reduce the fill-in induced by the decomposition, and then applies a symbolic factorization
to predict the structure of the factors. Upon completion of these steps, it distributes the matrix
blocks among the processors, applies the decomposition of A, and solves the system (top-down).
Finally, if necessary, it refines the solution using different iterative methods such as GMRES or
CG [88]. This refinement is only applied if the precision of the result is insufficient.

PARDISO

The package PARDISO [172, 173, 121] contains high-performance, robust, memory-efficient
and easy-to-use software for solving large sparse symmetric and nonsymmetric linear systems of
equations on shared-memory and distributed-memory architectures. In order to improve the per-
formance of the sequential and parallel sparse numerical factorization, the algorithms are based on
a Level-3 BLAS update, and pipelining is exploited with a combination of left- and right-looking
supernode techniques. The parallel pivoting methods allow complete supernode pivoting in order
to balance numerical stability and scalability during the factorization process. The approach relies
on Open Multi-Processing (OpenMP) directives and MPI parallelization, and has been successfully
tested on many shared-memory parallel systems.

PARDISO calculates the solution of a set of sparse linear equations with multiple right-hand
sides, using a parallel LU , LDLT or LLT factorization. Moreover, PARDISO 5.0.0 computes the
exact bit-identical solution on multicores and cluster of multicores. This package performs different
analysis steps depending on the structure of the input matrix A. If the matrix is symmetric, the
solver first computes a symmetric fill-in reducing permutation based on either the minimum degree
algorithm or the nested dissection algorithm from the METIS package, followed by the parallel
left/right-looking numerical Cholesky factorization. The solver uses diagonal pivoting or 1 × 1
and 2× 2 Bunch-Kaufman pivoting for symmetric indefinite matrices and an approximation of the
solution is found by forward and backward substitution and iterative refinement. The process for
unsymmetric matrices is more complex and is described in [173].

SuperLU

SuperLU [125] contains a set of direct solvers for the solution of large sets of linear equations.
This solver is particularly appropriate for matrices with very unsymmetric structure and it contains
three different libraries for sequential (SuperLU), shared-memory multi-processors (SuperLU MT,

4

1.2. STATE-OF-THE-ART

Name Types of matrices accepted Language

pARMS Symmetric, unsymmetric C/Fortran

PETSc Symmetric, unsymmetric C/C++/Fortran/Matlab/Python

Hypre Symmetric, unsymmetric C/C++/Fortran/Python

ILUPACK Symmetric and/or Hermitian, general C/C++/Fortran/Matlab

Table 1.2: List of software based on iterative solvers for the solution of sparse linear systems.

based on Pthreads) and message-passing architectures (SuperLU DIST, using MPI). All the li-
braries use variations of the LU factorization optimized to take advantage of the sparsity pattern
and the target computer architecture.

MUMPS

MUMPS [6] is a package for solving systems of linear equations, where the coefficient matrix
is sparse and can be either unsymmetric, symmetric positive definite, or general symmetric, on
distributed-memory computers. This package implements a direct method based on a multifrontal
approach that computes an LU factorization. If the matrix is symmetric then the package computes
a factorization A = LDLT , where D is block diagonal matrix with blocks of order 1 or 2 on the
diagonal. The system is solved in three main steps: analysis, factorization, and solution. The first
step includes a preprocessing and a symbolic factorization. In the second, the original matrix is first
distributed onto the processors depending on the mapping obtained during the analysis, and the
numerical decomposition is computed as a sequence of dense factorization steps on so-called frontal
matrices (multifrontal approach). After the factorization, the factor matrices are kept distributed
(in memory or on disk). In the third step, the solution is obtained by a forward elimination step
followed by a backward elimination step. The first elimination step can be performed during the
factorization, so that only one of the factors has to be stored, and the third step only requires
the backward elimination step. This solution is finally postprocessed, using iterative refinement or
backward error analysis, to obtain the solution of the original system.

1.2.2 Iterative Solvers

Iterative methods solve the linear system Ax = b through a sequence of operations which
are applied to an initial solution, so that the final solution is progressively approximated. These
methods are commonly used to solve large systems of equations and will be described later in this
document in quite more detail. Some well-known iterative solvers are introduced in Table 1.2 and
are explained below.

pARMs

pARMS [154, 126] is a library of parallel iterative solvers for sparse linear systems of equations
developed at the University of Minnesota. The library offers a large selection of parallel precondi-
tioners based on a Recursive Multi-level ILU factorization and solvers based on Krylov subspace
approach, using a domain decomposition viewpoint, ranging from simple Additive Schwarz with or
without overlapping, to more complex Schur complement techniques. The communications between
processes are implemented using MPI.

5

CHAPTER 1. INTRODUCTION

PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) [35, 155], developed at
Argonne National Laboratory, is a suite of data structures and routines that provide the building
blocks for the implementation of large-scale application codes on parallel (and serial) computers,
especially those arising from PDEs. PETSc uses MPI for all message-passing communication. The
library is organized hierarchically, enabling users to employ the level of abstraction that is most
appropriate for a particular problem, and it uses object-oriented programming techniques which
provide enormous flexibility for users.

PETSc includes efficient implementations of Krylov subspace methods (GMRES, CG, CGS, Bi-
CG-Stab, TFQMR, Richardson,. . .) and popular preconditioners such as ILU factorization with
level of fill-in or based on a magnitude threshold, Jacobi, Additive Schwarz, etc. Moreover, it
provides interfaces to access external software as, for example, Trilinos/ML or Hypre.

Hypre

The Hypre [161, 109] library, developed at Lawrence Livermore National Laboratory, offers high
performance preconditioners and solvers for large and sparse linear systems on massively-parallel
computers. It provides conceptual interfaces which give users a more natural means to describe their
linear systems, and provide access to methods such as geometric multigrid which require additional
information beyond just the matrix. Its object model is more general and flexible than those in
other solver libraries, contributing to the robustness, ease of use, and interoperability. Multigrid
preconditioners are a major focus of the library (Algebraic MultiGrid (AMG), Approximate INVerse
(AINV),. . .), but it also provides several of the most commonly-used solvers, such as CG or GMRES,
to be used in conjunction with the preconditioners.

ILUPACK

ILUPACK [52, 110] is a software library for the iterative solution of large sparse linear systems.
The package, written in C and Fortran, implements a multi-level incomplete factorization approach
(multi-level ILU) based on an “inverse-based pivoting” strategy combined with Krylov subspace
iterative methods. ILUPACK supports single and double precision arithmetic for real and complex
numbers, and it works for symmetric and/or Hermitian matrices that may or not be positive definite
and general square matrices. Apart form the standard reordering routines to reduce fill-in, this
library also includes ARMS multi-level reordering strategies [168], as well as reordering routines to
locate the greater elements in the main diagonal [49, 73, 99]. These strategies are very useful to
improve the numerical stability of the incomplete factorization of symmetric indefinite and general
matrices. Prior to our work, there existed two parallel versions of this library: one for shared-
memory using OpenMP and an alternative for distributed-memory using MPI.

1.2.3 Direct and Iterative Solvers

The packages described next implement direct and iterative methods to solve large sparse linear
systems. The type of method which will be used is chosen depending on the features of the matrices
and the needs of the user. In addition, some of them combine both methods.

HiPS

HiPS [82] (Hierarchical Iterative Parallel Solver) is a C-library for solving large sparse linear
systems on parallel platforms, using techniques based on the Schur complement. The code, devel-

6

1.2. STATE-OF-THE-ART

Name Types of matrices accepted Language

HiPs Symmetric, unsymmetric C/C++/Fortran

Trilinos Symmetric, unsymmetric C/C++

WSMP Symmetric Positive Definite (SPD), quasi-definite, and indefinite C/Fortran

PARASPAR Unsymmetric C/Fortran

Table 1.3: List of software that combines direct and iterative solvers for the solution of sparse
linear systems.

oped by the ScAlApplix team of INRIA Bordeaux, provides a hybrid method which blends direct
and iterative solvers. HIPS exploits the partitioning and multistage ILU techniques to enable a
highly parallel scheme.

Trilinos

Trilinos [102], developed by the Sandia National Laboratory (EE.UU.), provides a wide-variety
of solution methods for linear and eigen systems. The main objective of the Trilinos project is
to facilitate the design, development, integration and ongoing support of mathematical software
libraries within an object-oriented framework for the solution of large-scale problems. Trilinos
is composed of several libraries which have been developed independently and can be also used
independently or together with other packages because the software provides interfaces to promote
the interoperability of independently developed software.

Trilinos uses a two-level software structure designed around collections of packages. A Trilinos
package, in the first level, is an integral unit usually developed by a small team of experts in
particular areas such as algebraic preconditioners, nonlinear solvers, etc. In addition, there is
a second level composed of the packages that exist underneath the top level, which provide a
common look-and-feel, including configuration, documentation, licensing, and bug-tracking. The
Ifpack package provides object-oriented interfaces for Jacobi preconditioners based on the ILU
factorization; the ML package for AMG-based preconditioners based on smoothed aggregation;
and the Belos package contains implementations based on the Krylov subspace methods. The main
computational parts are written in C, the interfaces to access these parts in C++, and globally,
Trilinos uses MPI as the message-passing library.

WSMP

Watson Sparse Matrix Package (WSMP) [95, 94, 96], developed by the IBM T. J. Watson
Research Center, is a collection of algorithms for large sparse systems of linear equations. This high-
performance, robust, and easy-to-use software can be used as a serial package, or in shared-memory
and distributed-memory environments. In the distributed-memory environment each process can
be either serial or multithreaded. WSMP can be used for symmetric systems, as well as general
systems, using direct and iterative methods. For symmetric positive definite systems, WSMP
leverages a modified version of the multifrontal algorithm for sparse Cholesky factorization and
a highly scalable parallel sparse Cholesky factorization algorithm. For the solution of general
sparse systems, WSMP employs a modified version of the multifrontal algorithm for matrices with
an unsymmetric pattern of nonzeros. Moreover, WSMP supports threshold partial pivoting for
general matrices with a user-defined threshold.

7

CHAPTER 1. INTRODUCTION

PARASPAR

PARASPAR [188] is a parallel package for large and sparse linear systems of unsymmetric
matrices. Both direct and preconditioned iterative methods are used. The direct methods are based
on the Gaussian elimination with three pivoting strategies, and the iterative methods employed
are a modified ORTHOMIN algorithm, CGS, BI-CGSTAB and TFQMR. The preconditioners are
computed via an approximate LU factorization, which is obtained by dropping small non-zero
elements during the Gaussian elimination. The accuracy of the preconditioners can be automatically
improved if they are not sufficiently accurate.

1.2.4 Energy Optimization

In general, most of the parallel solvers described above are designed to improve performance, but
they are oblivious about energy efficiency. This is due to the common belief that an improvement
in performance implies also an upgrade in energy efficiency. However, this fact is not always true,
because the energy consumed by an application not only depends on the execution time. There are
several factors to take into account in order to optimize energy efficiency.

We next describe different techniques that can be used to improve the energy efficiency of a
scientific application, while maintaining the performance:

Dynamic Voltage-Frequency Scaling (DVFS). A number of energy reduction strategies act
on the processor frequency, leveraging slack periods in the computation [31, 128, 163, 169, 187].
Dynamic Voltage and Frecuency Scaling (DVFS) is a framework to change the processing fre-
quency and/or operating voltage of a processor, based on system performance requirements
at the given point of time, to achieve the best performance or lowest power dissipation. Un-
fortunately, the consumption adjustment by acting on the voltage-frequency provide limited
improvements in energy efficiency, in general.

Undervoltage. An alternative to the use of DVFS consists in operating in the undervoltage
band [10, 33], reducing the voltage while maintaining a constant frequency, with the con-
sequent reduction of dissipated power. However, this approximation can unleash errors which
decrease performance and increase of energy consumption due to their treatment. The balance
between these factors has been initially studied in [180, 29].

Communication-avoiding strategies. In applications with irregular access patterns, the data
movements consume significant amounts of time and energy, which can exceed the compu-
tational cost [78]. The reduction of these costs can be achieved by developing 2.5D/3D
memory technologies and exploiting near-data computing [100]. From the application point
of view, during last decade, the communication costs have been reduced in numerous basic
dense matrix computing operations, direct and iterative methods for sparse linear systems,
and tensors [65]. Theoretical studies consider parallel message-passing systems, with a hier-
archy of shared-memory or, in some cases, a mixed configuration. Communication-avoiding
algorithms have been developed for a subset of the above-mentioned applications, which ac-
complish the communication theoretical levels, on a variety of these architectures [65]. In the
iterative solution of sparse linear systems it is possible to reduce the amount of communica-
tions with a reorganization of the resolution schemes, that change the numerical properties of
the method [105], or by applying segmentation techniques [179]. An efficient alternative for
iterative methods hides the temporal cost of the communications by overlapping them with
other computations [105].

8

1.3. OBJECTIVES

Approximate computing. Contemporary processors lack the necessary power to exactly model
numerous real-world phenomena. For example, weather simulations or climate change studies
are based on approximate models of the real phenomenon. Besides, the amount of informa-
tion managed by the data centers will increase by a factor of 50 in the next years, while the
computational capacity of the centers will only increment in a factor of 10 [83]. Under these
conditions, approximate computing exploits the differences between the level of accuracy re-
quired by the application and the precision supported by the circuitry (IEEE 754 standard)
to reduce the energy consumption [137, 185]. Among the variety of approximate comput-
ing techniques, we point out precision scaling, memoization and task elimination. Iterative
refinement is a well-known case of approximate computing strategy to solve linear algebra
problems using simple-precision arithmetic (32 bits), in most of the computations, to obtain
a double-precision result (64-bits).

1.3 Objectives

The main goal of this thesis is the design, implementation and evaluation of parallel and energy-
efficient iterative sparse linear system solvers for multicore processors as well as recent manycore
accelerators such as the Intel Xeon Phi.

Prior to our work, there existed a parallel version of ILUPACK for shared-memory multipro-
cessors which used an ad-hoc runtime based on OpenMP [131]. However, this solution strongly
coupled the numerical algorithm with an ad-hoc runtime in charge of exploiting task-parallelism.
To address this problem, we aim to develop a task-parallel version of ILUPACK which can exploit
considerable levels of thread-concurrency and requires minor changes in the numerical algorithm.
The advantages of this proposal reside in that it limits the amount of modifications in ILUPACK’s
legacy code and enables a parallelization scheme which can be leveraged to implement different
versions of the solver based on the runtime framework OmpSs [149], MPI, and a combination of
both. Besides, the parallelization scheme can be also applied to easily parallelize other ILU-type
iterative solvers.

To achieve the main purpose, the work is divided in several specific objectives which are sum-
marized as follows:

Develop an automatic power-performance analysis framework. As energy consumption is
an important issue to tackle nowadays in our implementations, we develop a library, called
PMLib, which traces the use of power made by the applications. This is completed with a
powerful inspection tool that automatically detects the power sinks of the applications. This
tool will help developers to identify the power bottlenecks in the applications, so that they
will be able to focus their efforts to address them. We will use this tool in our dissertation to
analyze the power consumption of ILUPACK.

Study and analyze ILUPACK. As a starting point, we investigate ILUPACK, a library for the
iterative solution of sparse linear systems based on Krylov subspaces, which exploits inverse-
based ILUs to control the growth of the inverse triangular factors. In this study we go in
detail to investigate the possibilities to efficiently extract additional concurrency for multicore
processors.

Leverage task-parallelism in ILUPACK with OmpSs. The initial goal is the design, imple-
mentation, and evaluation of an optimized version of ILUPACK, which will be used in NUMA
platforms and manycore architectures such as the Intel Xeon Phi. This implementation ex-
ploits task-parallelism using OmpSs to improve performance.

9

CHAPTER 1. INTRODUCTION

Exploit the interoperability between message-passing and OmpSs. In order to execute ILU-
PACK on distributed-memory clusters of multicore processors, we design, implement, and
evaluate a concurrent version which exploits the interoperability between MPI and OmpSs,
efficiently leveraging the resources inside each processing node.

Evaluate the energy-efficiency. We analyze the energy costs of different implementations of
ILUPACK, using the PMLib library. In the evaluation we may consider several factors:
hardware, DVFS, Dynamic Concurrency Throttling (DCT), etc.

1.4 Structure of the Document

The remainder of this thesis describes the research that has been undertaken to fulfill the goals
stated above. Concretely, this manuscript is organized in six chapters. We next provide a brief
introduction to each of them:

Chapter 1 introduces the thesis. This chapter provides the motivation, and reviews the state-of-
the-art, objectives and organization of the document.

Chapter 2 presents an integrated framework for power-performance analysis of parallel scientific
workloads (PMLib). Moreover, this chapter describes an inspection tool that uses the PMLib
framework to automatically identify power sinks in the applications.

Chapter 3 summarizes different methods for solving sparse linear systems and the most significant
preconditioning techniques. Furthermore, this chapter introduces ILUPACK, the numerical
package for solving large systems of equations that is targeted in this thesis.

Chapter 4 describes how to extract task-parallelism in the PCG method in ILUPACK. In addi-
tion, this chapter presents different parallel implementations of the solver using OmpSs, MPI
and a combination of both.

Chapter 5 analyzes the energy-efficiency of the parallel versions of ILUPACK developed as part
of the thesis in different hardware architectures. This study considers a variety of factors that
can influence in the energy consumption.

Chapter 6 presents the main conclusions derived from this research, and provides future directions
to extend the work presented in this dissertation. Finally, it offers a list of publications derived
from this thesis.

10

CHAPTER 2

Automatic Power-Performance Analysis Framework

The considerable benefits that Exascale computing are expected to yield for crucial scientific
disciplines, from biology to nuclear engineering, are also anticipated to exert a positive impact on
industrial competitiveness that outweighs the costs of this technology by far [30, 43]. However, a
number of recent studies [30, 70, 75] have identified power consumption as one of the key challenges
to be able to assemble efficient hardware scaling beyond Petascale. The power wall is now recog-
nized as a crucial challenge that the HPC community will have to face [70, 78, 80]. A variety of signs
of this trend range from the energy efficiency regulatory requirements set by the US Environmental
Protection Agency to the biannual elaboration of the Green500 list [5] and the ongoing standard-
ization effort of this ranking. While in the past decade, HPC facilities have enjoyed considerable
improvements in the power-performance ratio [5] —mostly due to the deployment of heterogeneous
platforms equipped with hardware accelerators (e.g., NVIDIA and AMD graphics processors, Intel
Xeon Phi) or the adoption of low-power processors (IBM PowerPC A2, ARM chips, etc.)— much
remains to be done in terms of energy efficiency to render Exascale systems feasible by 2020.

In the last years, power-saving technologies and mechanisms originally designed for embedded
and mobile appliances have been increasingly embraced by the designers of desktop and server
systems. Nevertheless, awareness in software power efficiency still lags much behind [11, 170],
despite the energy waste that an ill-behaved application can infer. Indeed, tracing the consumption
of power made by scientific applications and workloads is key to detect energy bottlenecks and
understand power distribution. However, as of today, the number of fully integrated tools for this
purpose is insufficient to satisfy a rapidly increasing demand.

In this chapter, we present an integrated framework for power-performance analysis of parallel
scientific workloads which has been developed as part of this dissertation [25, 36]. The framework
leverages recent advances from vendors of desktop and server systems that enhance their systems
with on-board sensors to obtain fine-grain energy measurements of on-core hardware components.
Intel introduced these sensors, called RAPL [113, 114], with their Sandy Bridge microarchitecture.
Following this trend of exposing the power measurements from the systems, NVIDIA presented
the NVML interface for monitoring and managing various states of GPU devices, and Intel also
defined the MIC Management Library for controlling and configuring several metrics of the Intel
Xeon Phi coprocessor platform. Concretely, in this work we have designed a power-performance
analysis framework to obtain power/energy samples from RAPL sensors, GPU devices and Xeon

11

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

Phi coprocessors. Furthermore, the key contribution that complements the framework is a powerful
inspection tool that automatically identifies power sinks [37].

This chapter is organized as follows. In Section 2.2, we describe the performance-power anal-
ysis framework, the instrumentation and visualization tools integrated with it, and the PMLib
library [36]. In Section 2.3 we describe the contributions of this work related with the framework.
Section 2.4 introduces a major extension of the framework consisting of a tool to automatically
detect the power sinks. There we also illustrate the information provided by the framework and
the potential of the automatic tool to detect power bottlenecks with two detailed examples. Finally,
we provide some concluding remarks in Section 2.5.

2.1 Integrated Tools

The power-performance analysis framework leverages several tools described in this section.
In particular, the framework interacts with the Extrae [79] instrumentation tool to produce per-
formance traces; and these traces can be visualized, simultaneously with the power traces, with
Paraver [153]. Besides, the framework obtains traces of power-related states defined by the Ad-
vanced Configuration and Power Interface specification (ACPI) [107].

2.1.1 Instrumentation and visualization tools

The use of Extrae and Paraver offers an enormous potential of analysis, both qualitative and
quantitative, allowing to identify the actual performance bottlenecks of parallel applications. The
microscopic view of the program behaviour that the tools provide is very useful to optimize the
parallel program performance.

Paraver

Paraver [153], developed at Barcelona Supercomputing Center (BSC), is a flexible parallel
program visualization and analysis tool based on an easy-to-use Motif Graphical User Interface
(GUI). Paraver was developed responding to the basic need of having a qualitative global perception
of the application behaviour by visual inspection, to be able to focus on the detailed quantitative
analysis of the problem. Paraver provides a large amount of information that directly improves the
decisions on whether and where to invest the programming effort to optimize an application. The
result is a reduction of the development time as well as the minimization of the human resources.
Some features of Paraver are its support for the following [153]

• Detailed quantitative analysis of program performance.

• Concurrent comparative analysis of multiple traces.

• Fast analysis of very large traces.

• Mixed support for message passing and shared memory.

• Easy personalization of the semantics of the visualized information.

One of the main features of Paraver is the flexibility to represent traces coming from different
environments. Traces are composed of state transitions, events, and communications with an
associated timestamp. These three elements can be used to build traces that capture the behaviour
along time of very different kinds of systems. The Paraver distribution includes, either in its

12

2.1. INTEGRATED TOOLS

Figure 2.1: Paraver Internal Structure.

own distribution or as an additional package, the instrumentation tools for sequential and parallel
application tracing, as well as for system activity tracing in a multiprogrammed environment.

Paraver allows users to develop their own tracing facilities according to their own interests and
requirements. The possibilities offered by the visualization, semantic and quantitative analyzer
modules are powerful, enabling users to analyze and understand the behaviour of the traced system.
Paraver also allows to customize some of its parts as well as to plug-in new functionalities.

Expressive power, flexibility and the capability of efficiently handling large traces are key fea-
tures addressed in the design of Paraver. The clear and modular structure of this tool plays a
significant role towards achieving these targets.

The structure of Paraver consists of three levels of modules (see Figure 2.1). At the top, the
Filter Module (FM) works onto the trace file. This module offers a partial view of the trace file
to the next level. In the middle, the Semantic Module (SM) receives the trace file filtered by the
previous module and interprets it. This module transforms the record traces to time-dependent
values which will be passed to the Representation Module (RM). The SM is the most important
level because it extracts and gives sense to the record values in the trace file. This file contains
a significant amount of information that this module can selects (the semantics of the trace file).
Finally, at the bottom, the RM receives the time-dependent values computed by the SM and
displays it in different ways. The RM drives thus the whole process and offers a graphical display
of the trace file.

Extrae

Extrae [79] is a dynamic instrumentation and measurement package developed at BSC. It is
devoted to generate Paraver trace-files for a post-mortem analysis. This package traces programs

13

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

Supported programming models

MPI

OpenMP*

CUDA*

OpenCL*

pthread*

OmpSs*

Java

Python

Supported platforms

Linux clusters (x86 and x86-64)

BlueGene/Q

Cray

nVidia GPUs

Intel Xeon Phi

ARM

Android

Table 2.1: Programming models and systems supported by Extrae. * Also available in conjunction
with MPI.

compiled and ran in the shared memory model (like OpenMP and pthreads), the MPI, or both
programming models (different MPI processes using OpenMP or pthreads within each MPI process).
It is currently available for different platforms and operating systems; see Table 2.1.

Extrae uses different interposition mechanisms to inject probes into the target application so
as to gather information regarding the application performance.

Interposition mechanisms. Extrae takes advantage of multiple interposition mechanisms to
add monitors into the application. Independently of which mechanism is employed, the goal
is the same: collect performance metrics at known application points to finally provide the
performance analyst a correlation between performance and the application execution. The
interposition mechanisms used by Extrae are [79]:

• Linker preload (LD PRELOAD). Most of the current operating systems allow injecting a
shared library into an application before the application is actually loaded. If the li-
brary that is being preloaded provides the same symbols as those contained in shared
libraries, such symbols can be wrapped in order to inject code in these calls. In Linux
systems this technique is commonly implemented by using the LD PRELOAD environ-
ment variable. Extrae contains substitution symbols for many parallel runtimes, such
as OpenMP (either Intel, GNU or IBM runtimes), pthread, Compute Unified Device
Architecture (CUDA) accelerated applications, and MPI applications.

• DynInst. DynInst is an instrumentation library that allows to modify the application by
injecting code at specific code locations. Although originally it allowed modifying the
application code when the application was run, now it supports rewriting the binary of
the application so that the code injection is required only once. Extrae uses DynInst to
instrument different parallel programming runtimes, such as OpenMP (either for Intel,
GNU or IBM runtimes), CUDA accelerated applications, and MPI applications. DynInst
also offers Extrae the possibility to instrument user functions by simply listing them in
a file.

• Additional instrumentation mechanisms. Extrae also takes advantage of some parallel
programming runtimes that have their own instrumentation (or profile) mechanisms
available for performance tools. These include MPI, which provides the Profile-MPI
(PMPI) layer, as well as the CUPTI infrastructure to get information from CUDA
devices, OmpSs or even the Open Computing Language (OpenCL) profiling capabilities.

14

2.1. INTEGRATED TOOLS

There are some compilers that allow instrumenting application routines by using special
compilation flags during the compilation and link phases.

• Extrae Application Programming Interface (API). Finally, Extrae offers the user the
possibility to manually instrument the application and emit its own events if the previous
mechanisms do not fulfill the user’s needs.

Sampling mechanisms. Extrae can be leveraged to instrument the application code, and it
also offers sampling mechanisms to gather performance data. While adding monitors into a
specific location of the application provides insights which can be easily correlated with the
source code, the resolution of such data is directly related with the application control flow.
Adding sampling capabilities into Extrae produces performance information for regions of
code which have not been instrumented.

Currently, Extrae supports two different sampling mechanisms. The first mechanism is based
on signal timers, which fire the sampling handler at a specified time interval. The second
sampling mechanism uses the processor performance counters to trigger the sampling handler
at a specified interval of events. While the first mechanism can provide samples that are
totally uncorrelated with the application code, the second mechanism, using the appropriate
performance counters, can provide insights of the application behaviour while still presenting
some correlation with the application code/performance.

Performance data gathered. The monitors added by Extrae collect different types of in-
formation. Depending on the placement, each monitor can be instructed to collect specific
information. The most common information is:

• Timestamp. When analyzing the behaviour of an application, it is important to have
a fine timing granularity (up to nanoseconds). Extrae provides a set of clock functions
that are specifically implemented for different target machines in order to provide the
most accurate possible timing. On systems with daemons that inhibit the usage of these
timers, or systems that do not have a specific timer implementation, Extrae still uses
advanced Portable Operating System Interface (POSIX) clocks to provide nanosecond
resolution timestamps with low cost.

• Performance and other counter metrics. Extrae uses the Performance API (PAPI) [141]
and the Performance Monitor API (PMAPI) interfaces to collect information on the
microprocessor performance. With the advent of the components in the PAPI software,
Extrae is not only able to collect information regarding how the microprocessor behaves,
but also allows studying multiple components of the system (disk, network, operating
system, among others) and extend the study to the microprocessor (power consumption
and thermal information). Extrae mainly collects these counter metrics at the parallel
programming calls and at the samples. It also allows capturing such information at the
entry and exit points of the user routines that were instrumented.

• References to the source code. Analyzing the performance of an application requires
to study the code that is responsible for such performance. This way the analyst can
locate the performance bottlenecks and suggest improvements on the application code.
Extrae provides information on the source code that was executed (in terms of name
of function, file name and line number) at specific location points such as programming
model calls or sampling points.

15

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

State Name Description CPUs

C0 Operating State CPU fully turned on All CPUs

C1 Halt
Stops CPU main internal clocks via software;
bus interface unit and APIC are kept running at full speed

486DX4 and above

C1E Enhanced State
Stops CPU main internal clocks via software and reduces CPU voltage;
bus interface unit and APIC are kept running at full speed

All socket LGA775 CPUs

C1E – Stops all CPU internal clocks
Turion 64, 65-nm Athlon X2
and Phenom CPUs

C2 Stop Grant
Stops CPU main internal clocks via hardware;
bus interface unit and APIC are kept running at full speed

486DX4 and above

C2 Stop Clock Stops CPU internal and external clocks via hardware
Only 486DX4, Pentium,
Pentium MMX, K5, K6, K6-2, K6-III

C2E Extended Stop Grant
Stops CPU main internal clocks via hardware and reduces CPU voltage;
bus interface unit and APIC are kept running at full speed

Core 2 Duo and above (Intel only)

C3 Sleep Stops all CPU internal clocks
Pentium II, Athlon and above,
but not on Core 2 Duo E4000 and E6000

C3 Deep Sleep Stops all CPU internal and external clocks
Pentium II and above, but not on
Core 2 Duo E4000 and E6000; Turion 64

C3 AltVID Stops all CPU internal clocks and reduces CPU voltage AMD Turion 64

C4 Deeper Sleep Reduces CPU voltage
Pentium M and above, but not on
Core 2 Duo E4000 and E6000 series;
AMD Turion 64

C4E/C5 Enhanced Deeper Sleep Reduces CPU voltage even more and turns off the memory cache
Core Solo, Core Duo and 45-nm
mobile Core 2 Duo only

C6 Deep Power Down Reduces the CPU internal voltage to any value, including 0 V Re 45-nm mobile Core 2 Duo only

Table 2.2: Available processor power states (extracted from [184]).

2.1.2 Advanced Configuration and Power Interface

Most current processors, from those designed for mobile devices to other conceived for desk-
top and HPC servers, adhere now to the ACPI [107], which defines an open standard for device
configuration and power management from the operating system.

For our power monitoring purposes, the ACPI specification defines a series of CPU-processor
power states, collectively known as C-states, that are valid on a per-core basis. They reveal the
capability of an idle processor to turn off idle components in order to save power. Processor power
states are designated as C0, C1, C2, C3, ..., Cn. When a processor runs in the C0 state, it is
executing instructions. In contrast, the C1 through Cn power states are sleeping states where the
processor consumes less power and dissipates less heat than in the C0 state. The higher the state
is, the deeper the Central Processing Unit (CPU) sleep mode, which means that more components
are shut down to save power. Deeper sleep states save more power, but the downside is that they
incur higher latency to become operative again (the time the CPU needs to go back to C0). Some
states also have submodes with different power saving latency levels. Which C-states and submodes
are supported depends on the processor (see Table 2.2), but C1 is always available. Modes C1 to
C3 basically cut clock signals inside the CPU, while modes C4 to C6 reduce the CPU voltage.
“Enhanced” modes can apply both techniques at the same time.

To preserve power, the Operating System-directed configuration and Power Management (OSPM)
places the processor into one of its supported sleeping states when idle. Moreover, in the C0 state,
ACPI allows the performance of the processor to be altered through a defined “throttling” process,
defining transitions into multiple performance states (P-states), which will be explained later. A
diagram of processor power states is provided in Figure 2.2.

When a processor operates in C0 state, it can be in one of several CPU-performance states
(P-states). While all C-states except C0 are idle states, the P-states are operational states related
to the CPU frequency and voltage. Concretely, a high P-state is associated with a low frequency
and voltage. The number of P-states is processor-specific and the implementation differs across
various types, but P0 is always the highest-performance state, while higher P-states represent slower
processor speeds and lower power consumption. For example, a processor in P3 state runs more

16

2.2. THE PMLIB FRAMEWORK

Figure 2.2: Processor power states [107].

slowly and dissipates less power than a processor running at P1 state. To operate at any P-state, the
processor must be in C0 state, which implies it is active and not idling. A lower power dissipation
does not necessarily imply higher energy savings, as power combines with time to determine energy
consumption.

2.2 The PMLib Framework

PMLib [25, 36] is a framework of easy-to-use and scalable tools to analyze the power dissipation
and the energy consumption of parallel MPI and/or multi-threaded scientific applications.

The framework is composed of two modules/types of daemons: A single external-PMLib dae-
mon runs in a separate system (the power tracing server), to avoid interfering with the application
while collecting samples from different wattmeters attached to the target platform where the ap-
plication is executed. Furthermore, an internal-PMLib daemon runs in each node of the target
platform, collecting information (like, e.g., the core C-states [107]) that is only accessible locally.

Figure 2.3 illustrates the interaction of the PMLib framework, a performance tracing suite,
and a graphical visualization tool with the target application. The starting point is a concurrent
scientific application, instrumented with the PMLib software, that runs on a parallel target plat-
form (e.g., a cluster, a multicore architecture, or a hybrid computer equipped with one or several
GPUs), yielding a certain power consumption. Attached to the application node(s), there may
be several wattmeter devices (either internal Direct Current (DC) or external Alternating Current
(AC)) that the external-PMLib daemon steadily samples from the power tracing platform. Calls
from the users’ code running on the target platform, using the PMLib API, communicate with the
external-PMLib module in order to instruct the tracing server to start/stop collecting the data
captured by the wattmeters, dump the power traces into disk files, etc. Upon completion of the ap-
plication’s execution, the power trace can be inspected, optionally side-by-side with a performance
trace, using the appropriate visualization tool.

This framework allows a smooth integration of the PMLib power-related traces and the perfor-
mance traces obtained with Extrae [79], while the result can be visualized using Paraver [182]; see
Figure 2.4 for example. However, the modular design of the framework can easily accommodate
other tracing suites as, e.g., TAU [164], VampirTrace [9], HDTrace [120], etc.

17

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

Performance
trace file trace file

Cstates Power
trace file

Power
tracing
server

Trace visualization tool

Target platform

performance tracing daemons internal−pmlib daemons

Perfomance tracing tool Cstates tracing tool Power tracing tool

daemon

Scientific application

Powermeter
devices

270, 120, 270, 120, 190, ...

(instrumented with PMLib)

external-PMLib

Figure 2.3: Interaction of PMLib and performance/visualization tracing tools with a parallel sci-
entific workload, producing traces on application performance and power dissipation
that become inputs to the visualization tool.

Figure 2.4: Information captured with the PMLib framework and visualized with Paraver: ap-
plication performance and power traces (top and bottom, respectively).

18

2.2. THE PMLIB FRAMEWORK

2.2.1 Hardware power sampling devices

The PMLib package interacts with a number of power sampling devices. The power sampling
devices include external commercial products, such as APC 8653 Power Distribution Unit (PDU)
and WattsUp? Pro .Net, which are directly attached to the wires that connect the electric socket
to the computer Power Supply Unit (PSU), measuring the external AC for the full platform. They
also include some internal DC wattmeter designs, consisting of an appropriate choice of current
transducers that produce data for a commercial Data Acquisition System (DAS) from NI and,
alternatively, other designs that use a microcontroller to sample transducer data. All these devices
are described in more detail next, and the connection points are illustrated in Figure 2.5:

External AC wattmeters. The APC 8653 PDU has 24 outlets and operates at a sampling rate
of 1 Hz, employing the Simple Network Management Protocol (SNMP) to communicate with
the tracing server via Ethernet. The WattsUp? Pro .Net works at 1 Hz, and returns samples
to the server through an Universal Serial Bus (USB) 2.0 line.

Powermeter using NI DAS. Measurement devices were developed taking into account that they
had to measure currents ranging from 1 to 15 A, without introducing significant voltage drops.
That is why the LEM HXS 20-NP Hall effect current sensor was selected. The device exhibits
high accuracy and linearity, and a very low internal resistance, while being able to measure
current in the required ranges.

A set of designs include several channels with each one comprising a transducer that is con-
nected to one of the power lines leaving from the PSU. The final system is a modular design,
based on stackable 8-channel components that share power and reference voltage, for a total
of 32 current channels.

The DAS is composed of the NI9205 module and the NIcDAQ-9178 chassis. The module fea-
tures 32 16-bit resolution Analog-to-Digital (AD) channels which can sample data at 7,000 Hz.
In principle, the LabView software from NI runs in the tracing server, reading the data cap-
tured by the DAS from a USB 2.0 port in the chassis. For convenience, a daemon/software
was implemented to interact with the chassis, without the need of LabView, enabling a better
integration of the device with PMLib.

Microcontroller-based wattmeters. The initial designs featured 10 and 25 channels, plus a
Peripheral Interface Controller (PIC) 18 microcontroller from Microchip, to perform AD con-
version. Each channel consisted of the aforementioned HXS 20-NP transducer and a 10-bit
resolution AD channel in the microcontroller. All the channels shared a reference voltage of
2.5 V generated by the transducers. Data was sent to the host computer over an asynchronous
RS232 port, and the sampling rate was therefore limited by the speed of the communications
link (115,200 bauds in the selected microcontroller).

2.2.2 The PMLib library

The PMLib software package is developed and maintained by the HPC&A research group
at the Universitat Jaume I to investigate the power usage of HPC applications. The current
implementation of this package provides an interface to utilize all the afore-mentioned wattmeters
and several tracing tools. We next portray the interface of PMLib using a practical example.

Power measurement is controlled from the application using a collection of routines to query
information on the power measurement units, create counters associated with a device where power

19

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

powermeter
Internal

Computer

Power
supply
unit

External
powermeter

DAS

National InstrumentsModule−based
powermeterpowermeter

Microcontroller−based

WattsUp? Pro .NET

Application node

Mainboard

Ethernet

server
Power tracing

Power tracing
daemon

External

Internal

devices

devices

APC 8653 PDU

Figure 2.5: Single-node application system and sampling points for external and internal
wattmeters.

data is stored, start/interrupt/continue/terminate power sampling, etc. All this information is
managed by the PMLib server, which is in charge of obtaining these data from the devices and
return the appropriate answers, via the interface of the PMLib routines, to the invoking application
(client). This client-server interaction is exposed in Figure 2.6.

Figure 2.7 displays a detailed example illustrating the use of PMLib. The code first declares
the most important variables. Next, two server structures are initialized with their respective
Internet Protocol (IP) addresses and the port that will be used for the communication with both
servers. Here, the first server measures power samples, and it is located in a separated machine
to avoid interfering with the parallel application. Moreover, the C-states are recorded using the
second server, which is placed in the same machine where the parallel application runs, so that it
can collect the requested data from local registers. The invocation to the function pm get devices

establishes a communication with the server in order to obtain a list with the names of wattmeters
connected to it. With this information, the call to pm get device info, with one of the detected
wattmeters, returns specific information on this device.

The next two calls to pm set lines select the lines to measure (distinct wattmeters may have
different numbers of lines) depending on the hardware whose power consumption will be analyzed.
Next, the function pm create counter is called twice, to create one counter associated with the
DCMeter1 wattmeter and a second one that is bound to the C-states. The measurement is initiated
and terminated from the application via routines pm start counter and pm stop counter, respec-
tively. In this case, we measure the power and record the C-states during the execution of routine
dgemm. Then, the sampling process is momentarily interrupted, by invoking pm stop counter,
and continued later, by using pm continue counter, to measure the power for routine dsyrk.

20

2.2. THE PMLIB FRAMEWORK

Client Server

"DCM1", "DCM2", ...

pm_get_devices(...)

pm_get_device_info("DCM1",...)

"DCM1", 25Hz, 12 lines

pm_create_counter("DCM1",...)

pm_start_counter(...)

Ack

Ack

Code to measure

pm_stop_counter(...)

Ack

pm_get_counter_data(...)

[122.4, 135.0, 128.6, ...]

pm_finalize_counter(...)

Ack

Figure 2.6: Diagram of the communication between client (running a scientific application) and
the (PMLib) server.

After that, pm get counter data saves the collected data onto the corresponding counter struc-
ture; this information is printed in one of the available formats (in the example, Paraver for-
mat, by using pm print data paraver routine); and, finally, the counters are destroyed using
pm finalize counter.

2.2.3 Module to detect power-related states

Our power framework obtains a trace of the C-states of each core. In order to gather infor-
mation on the C-states, a daemon integrated into the power framework accesses the appropriate
MSR register for each core and state, with a user-configured frequency. The daemon reads values
corresponding to the total time (in microseconds) spent in a certain state. This value is then sub-
tracted from the previous read, normalized, and stored together with a timestamp in a file with a
user-selected format.

The state-recording daemon has to run on the same platform as the application and, thus,
it introduces a certain overhead (in terms of execution time as well as power consumption) that,
depending on the software that is being monitored, can become nonnegligible. To avoid this effect,
the user should experimentally adjust the sampling frequency of this daemon with care.

Figure 2.8 offers a graphical example of the information that can be collected with the power-
tracing framework, when combined with the performance tracing tool Extrae and the visualization
tool Paraver. The views correspond to the execution of a synthetic parallel benchmark that
randomly issues three types of computational kernels: dgemm (matrix-matrix product), dtrsm (tri-
angular system solve), and sleep. The test was run using 8 threads on a platform equipped with
two Intel Xeon E5504 cores at 2.00 GHz, and 24 Gbytes of RAM. The performance trace in the

21

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

int main (int argc , char *argv []) {

server_t server1 , server2;

counter_t counter1 , counter2;

line_t lines1 , lines2;

device_t disp; char **list;

int i, num_devices , freq1=0, freq2=0, aggr1=1, aggr2 =1;

// . . . Some other variables . . .

// In i t i a l i z e s the servers ’ structures
pm_set_server("150.128.82.30", 6526, &server1);

pm_set_server("127.0.0.1", 6526, &server2);

// Query on #devices connected to server1 , and obtain handles .
// Then, output information , e . g . , for device [0]
pm_get_devices(server1 , &list , &num_devices);

pm_get_device_info(server1 , list[0], &disp);

printf("Name: %s \t Max freq: %d \t Number of lines: %d \n",

disp.name , disp.max_frecuency , disp.n_lines);

// Select the l ines to measure
pm_set_lines("0-11", &lines1);

pm_set_lines("0-31", &lines2);

// Create a counter for powermeter DCMeter1
pm_create_counter(list[0], lines1 , !aggr1 , freq1 , server1 , &counter1);

// Create a counter for C−states
pm_create_counter("Cstates", lines2 , !aggr2 , freq2 , server2 , &counter2);

// Start to col lect samples : power, C−states
pm_start_counter (& counter1);

pm_start_counter (& counter2);

// Sampled application code fragment
dgemm(&transa , &transb , &m, &n, &k, &alpha , &A[k*lda+i], &lda ,

&B[j*ldb+k], &ldb , &beta , &C[j*ldc+i], &ldc);

// Stop collecting samples
pm_stop_counter (& counter2);

pm_stop_counter (& counter1);

// . . . Some other nonsampled application code fragment . . .

// Continue to col lect samples : only power
pm_continue_counter (& counter1);

// Sampled application code fragment
dsyrk(&transa , &transb , &m, &n, &alpha , &A[k*lda+i], &lda , &beta , &C[i*ldc+i], &ldc

);

//Stop collecting samples
pm_stop_counter (& counter1);

// Dump collected data onto memory
pm_get_counter_data (& counter2);

pm_get_counter_data (& counter1);

// Print power data in Paraver format
pm_print_data_paraver("out.prv", counter1 , lines1 , 0, "us");

// Print C−states data in Paraver format
pm_print_data_paraver_cstates("cstates.prv", counter2 , lines2 , 0, "us");

//Finalize the counters
pm_finalize_counter (& counter2);

pm_finalize_counter (& counter1);

return 0; }

Figure 2.7: Example of use of PMLib.

22

2.2. THE PMLIB FRAMEWORK

Performance

trace

Legend

Power trace

C-states

Legend

Figure 2.8: Example of performance and power traces captured by Extrae and PMLib framework,
visualized with Paraver.

top plot displays the task activity per core; the second plot corresponds to the aggregated power
dissipated by the mainboard of the machine, captured with the NI wattmeter operating at 1 KHz;
the C-states trace in the third plot represents the variations of the cores between processor states
C0, C1, C3 and C6 (with a sampling frequency of 10 Hz). The table at the bottom reports the
information contained in the performance and C-states traces in numerical format.

The PMLib framework also obtains a trace of the P-states of each core. Following the procedure
described previously for the C-states, this tool reads the corresponding MSR registers to obtain
the required information, and processes them to provide a visual trace which shows the different
P-states of a core during the execution of an application.

23

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

2.3 Enrichment of PMLib

The PMLib framework has been extended, as part of this dissertation, to accommodate recent
processor technology. These enhancements consisted in designing and implementing three new
modules which run in the internal-PMLib daemon and interact with the PMLib library to obtain
power/energy measurements from the RAPL sensors of an Intel CPU, from the NVML library in
NVIDIA GPU devices, and from the MIC management library in Intel Xeon Phi coprocessors.

2.3.1 Running Average Power Limit (RAPL)

Many recent architectures (e.g., Intel Xeon “Sandy-bridge”, AMD Opteron “Bulldozer”, NVIDIA
K20 “Kepler”, and IBM Power 7) expose power and/or temperature sensors/models to the pro-
grammer. In particular, Intel introduced the RAPL [113, 114] interface with the Sandy Bridge
microarchitecture. RAPL is available in newer versions of the Xeon server-level CPUs and provides
sensors to measure the power and energy consumption of the CPU-level components listed below:

• rapl pkg: Complete CPU package.

• rapl pp0: Processor cores only.

• rapl pp1: A specific device in the uncore.

• rapl dram: Memory controller.

In order to manage the power consumed across multiple sockets via RAPL, individual limits
must be programmed for each socket. Moreover, RAPL sensors can be configured and examined by
reading MSRs via RDMSR instructions, which refer to specific register addresses. RAPL divides
the platforms into domains, which are physically meaningful for power management. The specific
RAPL domains available in a platform vary across product segments. Platforms targeting the client
segment support the following RAPL domain hierarchy:

• Package.

• Two power planes: PP0 and PP1.

On the other hand, platforms targeting the server segment support the following RAPL domain
hierarchy:

• Package.

• Power plane: PP0.

• Dynamic Random Access Memory (DRAM).

Additionally, each RAPL domain supports the following set of capabilities, with some of them
being optional (as stated below):

• Power limit: MSR interfaces to specify power limit, time window, lock bit, clamp bit, etc.

• Energy Status: Power metering interface providing energy consumption information.

• Perf Status (Optional): Interface providing information on the performance effects (regres-
sion) due to power limits. It is defined as a duration metric that measures the power limit
effect in the respective domain. The meaning of the duration is domain-specific.

24

2.3. ENRICHMENT OF PMLIB

Domain Power Limit Energy Status Policy Perf Status Power info

PKG MSR PKG POWER LIMIT MSR PKG ENERGY STATUS RESERVED MSR PKG PERF STATUS MSR PKG POWER INFO

DRAM MSR DRAM POWER LIMIT MSR DRAM ENERGY STATUS RESERVED MSR DRAM PERF STATUS MSR DRAM POWER INFO

PP0 MSR PP0 POWER LIMIT MSR PP0 ENERGY STATUS MSR PP0 POLICY MSR PP0 PERF STATUS RESERVED

PP1 MSR PP1 POWER LIMIT MSR PP1 ENERGY STATUS MSR PP1 POLICY RESERVED RESERVED

Table 2.3: RAPL MSR interfaces and RAPL domains.

• Power Info (Optional): Interface providing information on the range of parameters for a
given domain, minimum power, maximum power, etc.

• Policy (Optional): 4-bit priority information that is a hint to hardware for dividing budget
between sub-domains in a parent domain.

Each one of the previous capabilities requires specific units in order to describe them. Power is
expressed in Watts, Time in seconds, and Energy in Joules. Scaling factors are supplied to each
unit to make the information presented meaningfully in a finite number of bits. Units for power,
energy, and time are exposed in the read-only MSR RAPL POWER UNIT MSR. Each level of the RAPL
hierarchy provides a respective set of RAPL interface MSRs. Table 2.3 lists the RAPL MSR
interfaces available for each RAPL domain.

Starting from this configuration, it was possible to modify the internal-PMLib daemon to
periodically record power information. However, on the Intel architecture these readings are only
possible in privileged kernel mode. Hence, we require kernel-level support for energy readings.

In the implementation of the PMLib server, each wattmeter/interface has a specific module
to read power. Thus, we created a new module for the RAPL readings with the code shown in
Figure 2.9 (for simplicity we only show the code of the module for platforms targeting the server
segment. For platforms targeting the client segment we only have to change dram by pp1). The
PMLib server is implemented in Python, and each module is a Python class which inherits some
attributes of a general class Device. Specifically, this class is RAPLDevice and we implemented
the appropriate functions. The most important one is the read function. In this function, at
first, we open the MSRs of CPU 0, because we only have one socket (we need to open the MSRs
of a CPU of each socket to read). Next, we establish the correct power, energy and time units,
reading the MSR RAPL POWER UNIT register and applying the corresponding shift. Then, we read the
MSR registers (MSR PKG ENERGY STATUS, MSR PP0 ENERGY STATUS, MSR DRAM ENERGY STATUS) to
obtain the energy of all the components (socket, cores and DRAM), and use these values to calculate
the uncore energy. Given that these MSRs are updated every millisecond, a wait of the user-
configured period (higher than 1 ms) is introduced before reading these values again and subtracting
the previous ones to obtain the energy of the interval. We note that the PMLib framework returns
a list of power samples recorded at a given frequency. Thus, at the end of the read function, we
transform the energy samples into power samples. All this process is repeated while the server is
running.

The implementation of the RAPL module in PMLib is useful to recover instant power samples
and to draw the power trace of an application. However, if we only want to calculate the total
energy of an application, we do not need to use PMLib. Instead, we only need to subtract the
energy measurements at the beginning and at the end of the application. We developed a specific
code for this purpose that can be directly added to an application (see Figure 2.10). To use this
code we should take into account that the MSR Energy Status registers have a wraparound time of
around 60 seconds. Therefore, if the code takes longer to run, we should read the RAPL counters
several times, because otherwise, the total energy calculated will not be correct.

25

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

Define the MSR register addresses
MSR_PKG_ENERGY_STATUS = 0x611

MSR_PP0_ENERGY_STATUS = 0x639

MSR_DRAM_ENERGY_STATUS = 0x619

MSR_RAPL_POWER_UNIT = 0x606

class RAPLDevice(Device.AttachedDevice):

def read_msr(self , fd, which):

os.lseek(fd , which , 0)

return struct.unpack("=Q", os.read(fd , 8))[0]

def read(self):

#Create the vectors which store the measurements
energy_before = [0] * self.n_lines

energy_after = [0] * self.n_lines

power = [0] * self.n_lines

frequency = self.max_frequency ** -1 # Reading frequency
fd= os.open("/dev/cpu/%d/msr" % 0, os.O_RDONLY) # Open MSR registers

Read the MSRRAPLPOWERUNIT register and select the corresponding bits of i t
result= self.read_msr(fd , MSR_RAPL_POWER_UNIT);

power_units = 0.5 ** float(result &0xf)

energy_units= 0.5 ** float((result >>8)&0x1f)

time_units = 0.5 ** float((result >>16)&0xf)

t1=time.time()

First energy readings
energy_before [0]= self.read_msr(fd, MSR_PKG_ENERGY_STATUS) * energy_units # socket
energy_before [1]= self.read_msr(fd, MSR_PP0_ENERGY_STATUS) * energy_units # cores
energy_before [2]= self.read_msr(fd, MSR_DRAM_ENERGY_STATUS) * energy_units # dram
energy_before [3]= energy_before [0] - (energy_before [1] + energy_before [2]) # uncore

Wait frequency seconds
w= frequency - (time.time()-t1)

if (w > 0): time.sleep(w)

This loop i s repeated until we stop the server
while self.running:

t1=time.time()

Energy readings
energy_after [0]= self.read_msr(fd, MSR_PKG_ENERGY_STATUS) * energy_units

energy_after [1]= self.read_msr(fd, MSR_PP0_ENERGY_STATUS) * energy_units

energy_after [2]= self.read_msr(fd, MSR_DRAM_ENERGY_STATUS) * energy_units

energy_after [3]= energy_after [0] - (energy_after [1] + energy_after [2])

Calculate the power
power [0] = (energy_after [0] - energy_before [0])/w

power [1] = (energy_after [1] - energy_before [1])/w

power [2] = (energy_after [2] - energy_before [2])/w

power [3] = (energy_after [3] - energy_before [3])/w

Update the values for the next iteration
energy_before [0] = energy_after [0]

energy_before [1] = energy_after [1]

energy_before [2] = energy_after [2]

energy_before [3] = energy_after [3]

yield power # Return the power

Wait frequency seconds
w= frecuency - (time.time()-t1)

if (w > 0): time.sleep(w)

os.close(fd) # Close the MSRs

Figure 2.9: RAPL module implemented in the PMLib server.

26

2.3. ENRICHMENT OF PMLIB

int main (int argc , char * argv []) {

struct timeval start ,end;

long int time;

long long result;

uint64_t data;

double package_before , dram_before , cores_before , power_units ,

energy_units , package_after , dram_after , cores_after;

double energy , cores , dram , package;

int fd;

// Start the measurements
fd = open("/dev/cpu/0/msr", O_RDONLY); // Measurements in socket 0
pread(fd, &data , sizeof data , MSR_RAPL_POWER_UNIT);

result =(long long) data;

energy_units=pow(0.5,(double)((result >>8)&0x1f)); // Establish the energy units

pread(fd, &data , sizeof data , MSR_PKG_ENERGY_STATUS); // Socket
result =(long long) data;

package_before =(double)result*energy_units;

pread(fd, &data , sizeof data , MSR_DRAM_ENERGY_STATUS); // DRAM
result =(long long)data;

dram_before =(double)result*energy_units;

pread(fd, &data , sizeof data , MSR_PP0_ENERGY_STATUS); // Cores
result =(long long)data;

cores_before =(double)result*energy_units;

// OPERATIONS TO MEASURE

// Stop the measurements
pread(fd, &data , sizeof data , MSR_PKG_ENERGY_STATUS);

result =(long long) data;

package_after =(double)result*energy_units;

pread(fd, &data , sizeof data , MSR_DRAM_ENERGY_STATUS);

result =(long long)data;

dram_after =(double)result*energy_units;

pread(fd, &data , sizeof data , MSR_PP0_ENERGY_STATUS);

result =(long long)data;

cores_after =(double)result*energy_units;

// Calculate the total energy
energy = (package_after -package_before)+

(dram_after -dram_before); // Total energy

cores = cores_after -cores_before; // Total energy of cores

dram = dram_after - dram_before; // Total DRAM energy

package = package_after - package_before; // Total package energy

close(fd); // Close the MSRs
}

Figure 2.10: Example of use of RAPL directly from the code.

27

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

2.3.2 NVIDIA Management Library (NVML)

NVML [147] is a C-based API for monitoring and managing various states of NVIDIA GPU
devices. It provides direct access to the queries and commands exposed via nvidia-smi. Concretely,
the next information can be detected using NVML:

• ECC status information (error counts).

• GPU load (memory & processor).

• Temperature and fan speed.

• Active computational processes.

• GPU clock rates.

• Power management.

In our case, we use the functions provided by the pyNVML library [156] (Python interface to
GPU management and monitoring functions) to create a module of PMLib that provides power in-
formation on the GPUs (see Figure 2.11). Specifically, in the read function of the class NVMLDevice,
we employ the nvmlDeviceGetPowerUsage function [145] to retrieve the power usage reading for
the device, in milliWatts. With an accuracy of +/- 5 Watts, this is the power draw for the entire
board, including GPU, memory, etc. In a previous step, we have to initiate the library and acquire
the handle for a particular device, based on its index, calling the nvmlDeviceGetHandleByIndex

routine. In Figure 2.11, for simplicity we assume that there is only one GPU attached to the
machine. Thus, in the call to nvmlDeviceGetHandleByIndex we use 0 as index parameter. If there
are more devices, we will have to initiate a handle per device using its corresponding index. After
the initialization, we call routine nvmlDeviceGetPowerUsage repeatedly every frequency seconds,
until the server is stopped. When the server completes its execution, we shut down the NVML
library.

2.3.3 MIC Management Library (libmicmgmt)

Libmicmgmt [112] is a C/C++ library that exposes a set of APIs to applications in order to
monitor and configure several metrics of the Intel Xeon Phi coprocessor platform. It also allows
communication with other agents, such as the System Management Controller. Following a success-
ful boot of the Intel Xeon Phi coprocessor card(s), the primary responsibility of libmicmgmt is to
establish connections with the host driver and the coprocessor micro Operating System (OS), and
subsequently allow software to monitor/configure Intel Xeon Phi coprocessor parameters. There
are three main communication channels. The first channel is established with the coprocessor di-
rectly via the SCIF library. The second and third are established with the host driver via ioctls,
and either the sysfs interface on Linux platforms or the WMI interface on Windows platforms, as
indicated in Figure 2.12. The list of APIs included in the management library can be classified in
several broad categories.

We use libmicmgmt to implement a PMLib module which reads the power information of
the Intel Xeon Phi coprocessor. For this purpose, we employ functions of the Power utilization
API, taking advantage of the Python implementation of this library in order to implement the
PMLib module. In Figure 2.13 we illustrate the code of the read function of the MICDevice

class. The behaviour of this function is similar to that explained earlier for the other modules.
First, we initialize a vector to store the samples of the different devices and we establish the

28

2.3. ENRICHMENT OF PMLIB

from pynvml import *

class NVMLDevice(Device.AttachedDevice):

def read(self):

#Create the vector which store the measurements
power = [0] * self.n_lines

frequency = self.max_frequency ** -1

Init iate NVML and the handle
nvmlInit ()

handle = nvmlDeviceGetHandleByIndex (0) # There i s only one GPU,
so we use the index 0

t1=time.time()

Power reading
power [0]= nvmlDeviceGetPowerUsage(handle)/1000.0 # The value i s in milliwatts ,

and we convert i t to Watts
Wait frequency seconds
w= frequency - (time.time()-t1)

if (w > 0): time.sleep(w)

while self.running:

t1=time.time()

Power reading
power [0]= nvmlDeviceGetPowerUsage(handle)/1000.0 # The value i s in milliwatts ,

and we convert i t to Watts
Return power
yield power

Wait frequency seconds
w= frecuency - (time.time()-t1)

if (w > 0): time.sleep(w)

Stop NVML
nvmlShutdown ()

Figure 2.11: NVML module implemented in the PMLib server.

reading frequency. Then, we call routine micmgmt.mic get ndevices to query the number of MIC
devices connected to the host and we iterate over those devices (we use the instruction mic =

micmgmt.MicDevice(device) to access a specific device) to obtain the instant power samples of
each one calling the mic.mic get inst power readings() routine. This process is repeated every
frequency seconds until the server is stopped.

2.3.4 Comparison of power sampling interfaces

As an additional contribution of our development, we evaluated two power sampling/modeling
approaches, one which uses RAPL+MSR to obtain the power information and another one that
leverages a DC wattmeter using a DAS from NI (NI9205 module+NIcDAQ-9178 chassis). This
device is connected directly to the 12V wires from the power supply unit to the system motherboard,
as these lines feed the processor and main memory of the system [69]. The external-PMLib daemon
reads the data captured by the DAS from a USB 2.0 port in the chassis. Therefore the execution
of the external-PMLib does not introduce any overhead in the performance nor power traces.

29

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

Figure 2.12: Intel Xeon Phi Coprocessor Management Library Architecture for SCIF, sysfs and
WMI Communication Channels.

However, the readings of the RAPL counters using MSR registers are carried out by the internal-
PMLib daemon, and this can introduce a nonnegligible overhead during the execution.

While we can expect that RAPL+MSR provides accurate power reads, the goal of this study
is to assess whether the periodic access to the MSRs from PMLib results in a significant overhead
that blurs part of the advantages of this method. In particular, we performed this study using a
synthetic test composed of a sequence of runs of the cpuburn benchmark [136] followed by the sleep
Linux system call, for periods of 30 seconds each. The power profiles (for approximately 180 secs.)
obtained from running this test on a single core of the platform, captured by both RAPL+MSR and
NI wattmeter, are displayed in Figure 2.14. The results show the synchronization of the measures
taken by both interfaces, validating the RAPL+MSR interface to sample the power consumption.
As could be expected, the rates obtained from the NI wattmeter (up to 79 Watts) are higher than
those reported for RAPL+MSR (up to 36 Watts), since the former device measures the power draw
not only for the CPU socket (which includes the core/uncore components, the memory controller,
the QPI interconnect, etc.), but also for the Dual In-line Memory Modules (DIMMs) and other
off-chip components of the mainboard.

Table 2.4 details the overhead introduced by the access to the MSR from PMLib. There we
report the maximum and average power observed while running the test on 1 and 4 cores of the
platform, with measures taken from the internal-PMLib daemon (i.e., from RAPL+MSR) at 1,
10 and 100 samples/sec.; and from the external-PMLib daemon (i.e., the wattmeter) at 1,000
samples/sec. To avoid noise introduced by outliers, we consider the power data corresponding
to the intervals [125,145] sec. (third execution of sleep) and [155,175] sec. (third execution of
cpuburn) only.

The measurements obtained from RAPL+MSR in the Table 2.4 show a small overhead intro-
duced by the internal-PMLib, which depends on the sampling rate: about 0.5 Watts when it is
increased from 1 to 100, and basically independent of the test (idle or cpuburn). To analyze the
global power dissipation, the same tests were repeated using next the external-PMLib interface
only, with the results given in Table 2.5. Comparing Tables 2.4 and 2.5, we can conclude that the
overhead of the internal-PMLib is negligible.

30

2.3. ENRICHMENT OF PMLIB

import micmgmt

class MICDevice(Device.AttachedDevice):

def read(self):

#Create the vector which store the measurements
power = [0] * self.n_lines # se l f . n l ines i s the number of MIC devices

frequency = self.max_frequency ** -1

Query number of devices :
device_count = micmgmt.mic_get_ndevices ()

t1=time.time()

Iterate over cards in system
for device in range(device_count):

mic = micmgmt.MicDevice(device)

print "Found KNC device: %s" % mic.mic_get_device_name ()

try:

Power reading
power[device] = float(mic.mic_get_inst_power_readings ())/1000000

except micmgmt.MicException as e:

print "Failed to get power readings: %s: %s" % (mic.mic_get_inst_power_readings (), e)

Wait frequency seconds
w= frequency - (time.time()-t1)

if (w > 0): time.sleep(w)

while self.running:

t1=time.time()

for device in range(device_count):

mic = micmgmt.MicDevice(device)

try:

Power reading
power[device] = float(mic.mic_get_inst_power_readings ())/1000000

except micmgmt.MicException as e:

print "Failed to get power readings: %s: %s"%(mic.mic_get_inst_power_readings (), e)

yield power

Wait frequency seconds
w= frecuency - (time.time()-t1)

if (w > 0): time.sleep(w)

Figure 2.13: MIC module implemented in the PMLib server.

31

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

Figure 2.14: Power profiles of the synthetic test consisting of interleaved calls to sleep and
cpuburn, obtained from RAPL+MSR at 100 samples/sec. (top), and the NI
wattmeter at 1,000 samples/sec. (bottom).

Source RAPL freq. idle 1 × cpuburn 4 × cpuburn

max avg max avg max avg

RAPL+MSR

1 9.0 8.7 24.8 24.0 49.6 49.2
10 10.8 8.9 27.6 24.4 50.3 49.2

100 21.0 9.2 34.0 24.5 55.3 49.6

NI DAS
1 69.1 43.7 77.6 62.3 102.9 92.6

10 69.7 43.6 79.7 62.4 103.3 92.3
100 68.8 43.2 78.1 62.7 102.8 92.5

Table 2.4: Power measurements obtained from RAPL+MSR and the NI module using internal-
PMLib and external-PMLib respectively, with both daemons in simultaneous opera-
tion. Column “RAPL freq.” indicates the sampling/rate of the internal-PMLib dae-
mon, while the rate for the external one was 1,000 samples/sec.

Source idle 1 × cpuburn 4 × cpuburn

max avg max avg max avg

NI 70.6 43.7 77.5 63.0 103.3 92.2

Table 2.5: Power measurements obtained from the NI module using external-PMLib with only
that daemon in operation at a rate of 1,000 samples/sec.

2.4 Automatic Detection of Power Sinks

The use of PMLib can reveal an energy-inefficient hardware configuration or expose a waste
of energy incurred by an application [24], runtime [26], library or governor [27] related with the
parallel execution of linear algebra codes. In all these cases, the power bottlenecks are detected as
disagreements between the application activity and the system power consumption and, in general,
the source can be tracked down to the use of power-hungry busy-waits (i.e., polling loops) with
little benefits on the execution time. However, during these studies, side-by-side visual inspection
of performance and power traces is a cumbersome task at best, while also being an error prone
process.

To tackle this problem, as part of this dissertation, we introduce a parallel, a posteriori analyzer
to detect power bottlenecks with several major advantages over the previous manual approach:

32

2.4. AUTOMATIC DETECTION OF POWER SINKS

• The tool automates and accelerates the inspection process.

• The process is more reliable, as the detection of power sinks is based on a comparison between
the application performance trace and the C-state traces per core (instead of the performance
trace vs the power trace for the complete socket/platform that we exploited earlier).

• The analyzer is flexible: the task types that correspond to “useful” work can be defined by
the user; and the length of the analysis interval and the divergence (discrepancy) threshold
are parameters that can be adjusted to the desired levels.

• The inspection introduces a low overhead during the collection of the samples, with little side
effects on the application performance and power traces.

The interaction of the inspection tool with the rest of the framework is illustrated in Figure 2.15.

Inspection tool

Cstates
trace file

Performance
trace file

trace file
Power

trace file
Discepancies

Trace visualization tool

Performance trace

Discrepancies trace

Power trace

C−states trace

Thread 1

Thread 1

Thread 1

WATTS

Figure 2.15: Operation of the inspection tool to detect and report power sinks.

2.4.1 Operation and implementation

We next describe the analyzer and its properties in more detail. The inspection tool is developed
in Python and, after the execution of the application, can be applied to analyze a performance
trace, in principle produced by Extrae, and a compatible C-state trace per core produced by the
internal-PMLib daemon.

The use of Extrae, combined with the visualization environment Paraver, is convenient because
it allows to interactively analyze the behaviour of concurrent scientific applications. However, this
decision does not prevent the integration of other performance suites in our framework, as the
inspection tool only processes the performance traces, and does not interact in any other manner
with the specific tool that produced them.

33

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

On the other hand, the C-state trace is obtained with the internal-PMLib daemon, which
monitors the state of the processor cores at runtime. Besides, the read frequency of the daemon is
also configurable, allowing the user to adjust the level of noise introduced in the performance and
power traces.

In order to process the information contained in the traces, the inspection tool splits them into
intervals of a certain length t (configurable by the user), starting at time instants 0 and 0.5t of the
traces. The reason for the double division of the traces, starting at 0 and 0.5t, is to avoid that
power bottlenecks pass the analysis undetected if they are split between two consecutive intervals.
All the intervals are then inserted (enqueued) into a task pool for their analysis by the multi-
threaded analyzer, employing the Python Pool class [148]. For each CPU core and interval, the
analyzer compares the ratio of time that the application was inactive (i.e., performing no useful
computation from the application point of view) while the core remained in state C0 (active),
detecting a potential power sink whenever the difference between these two values is above a given
threshold (configurable by the user). While the version of the inspection tool that we just described
performs a linear analysis of the traces, we have also developed an alternative implementation
that performs a binary search of power bottlenecks and, in general, is faster when the number of
discrepancies is small.

The result of the bottleneck search is twofold: analytical and graphical. On one hand, it
produces a simple text output with a tuple (c, ti, tf , %divergence) per detected power sink, where
c is the core identifier, [ti, tf] is the time interval where the bottleneck occurs in the trace timeline,
and the last parameter quantifies the divergence between the application inactivity and the core
C-state ratios in that period. On the other hand, the analyzer also produces a new trace that
allows a rapid identification of the sources of discrepancies using a visualization tool, in our case,
Paraver.

2.4.2 Examples

In this section we illustrate the possibilities of the inspection tool to detect power bottlenecks
using two complex applications on multicore technology platforms. The next experiments were
carried out using IEEE double-precision arithmetic in the two platforms:

wt int is a shared-memory multiprocessor composed of two quad-core Intel Xeon 5504 processors
(total of 8 cores) running at 2.00 GHz, with 32 Gbytes of DDR3 Random Access Memory
(RAM) memory under Linux Ubuntu (kernel 2.6.32-220.4.1.el6.x86 64).

wt ivy is a hybrid platform equipped with an Intel Xeon i7-3770 processor (total of 6 cores)
running at 3.5 GHz, with 16 Gbytes of DDR3 RAM, and an NVIDIA Tesla C2050 (“Fermi”).
The operating system is Linux Ubuntu (kernel 2.6.32-220.4.1.el6.x86 64).

The software employed in the evaluation includes Intel MKL (composer xe 2011 sp1.9.293) and
CUDA (v6.5). The tracing and visualization facilities were Extrae (v2.2.0) and Paraver (v4.1.0).

ILUPACK

The first example of the inspection tool corresponds to the concurrent solution of sparse linear
systems using ILUPACK1, a package that computes and applies multi-level preconditioners to solve
linear systems. The parallelization of this solver for Symmetric Positive Definite matrices (SPD)
on multicore platforms in [21] relies on a task partitioning of the sparsity graph related to the

1http://ilupack.tu-bs.de

34

2.4. AUTOMATIC DETECTION OF POWER SINKS

0 us 57.275.209 us

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

193

87

0 us 57.275.209 us

Watts

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

0 us 57.275.209 us

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

0 us 57.275.209 us

Figure 2.16: Performance (top), power (top-middle), C-states (bottom-middle) and discrepancies
(bottom) traces, visualized with Paraver, for the concurrent execution of ILUPACK.

coefficient matrix of the system, that yields a Task Acyclic Graph (TAG) with the structure of a
binary tree capturing the dependencies between tasks. At runtime, tasks from the TAG that are
ready for execution (i.e., those with their dependencies with all other tasks fulfilled) are mapped
to threads on-demand, using a dynamic scheduler that manages a centralized queue on where the
ready tasks are pushed, combined with certain data locality heuristics. Upon completion of a task,
the thread in charge of its execution checks whether new tasks have became ready for execution,
inserting them into the ready queue. In the multi-threaded variant of ILUPACK when a thread
encounters no work to execute, it simply polls the centralized queue till a ready task becomes
available.

Figure 2.16 shows fragments of the performance, power and C-states traces obtained with
Extrae and PMLib for the parallel execution of ILUPACK on wt int platform. This particular
period corresponds to the computation of the preconditioner, which takes the first 57.27 secs. of
the total execution, and is followed by a longer iterative solution process (not included in the
figure). The TAG for this initial stage is organized as a binary tree with bottom-up dependencies
between tasks, and the bulk of the work is concentrated in the leaf tasks. This is visible in the
performance trace of the figure (top plot), which shows that initially all threads are occupied with
computation (except for a brief configuration period) but, towards the end, an increasing number

35

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

of threads become idle. As discussed in the previous paragraph, these “idle” threads then perform
a busy-wait, polling for more work (in the form of a ready task) that will not become available till
the solution stage (not included in the figure). Interestingly, the power and C-state traces (middle
plots) do not show any significant variation due to threads entering the polling phase. This is
captured in the power-sink (discrepancies) trace (bottom plot), which reveals a period where the
application was performing no useful computation, but the cores basically remained in the C0 state.

As an alternative to the previous power-hungry strategy, there exists a power-aware version
of the runtime underlying ILUPACK, which applies an “idle-wait”(blocking) whenever a thread
does not encounter a task ready for execution and, thus, becomes inactive. (Note that setting the
necessary conditions for the operating system to promote the cores into a power-saving C-state is as
much as we can do, since we cannot explicitly enforce the transition from the application code.) As
in the original version of the runtime, upon completing the execution of a task, a thread updates
the corresponding dependencies identifying those tasks that have become ready for execution.
However, in the power-aware runtime, the algorithm also ensures that the number of active threads
(non-blocked threads) is, at most, equal to the number of ready tasks, releasing blocked threads if
necessary. The number of threads is limited by the number of threads of the system. The effect of
idle-wait on the power trace and use of the C-states is illustrated in Figure 2.17. Compared with the
previous implementation, the new runtime effectively allows inactive cores to enter a power-saving
C-state, thus yielding the sought-after power reduction. As expected, the inspection tool does not
detect any discrepancy in this new implementation (see bottom plot of Figure 2.17), because the
C-states trace shows a variation to C6 state when the threads entering the blocking phase (i.e.,
they are performing an idle-wait).

LU Factorization

The second example of the inspection tool is obtained during the computation of the LU fac-
torization (with partial pivoting) of a dense matrix, using the FLA LU routine of the libflame

library, parallelized with the SuperMatrix runtime [159]. The hybrid CPU-GPU version of this
runtime [158] interleaves the execution of certain computations of the factorization on the CPU
(factorization of panels) with other tasks on the GPU (triangular system solves and updates of
the trailing submatrix), and controls the necessary data transfers between the main memory and
the device. The computations on the CPU are performed via calls to Intel MKL [111], while the
GPU computations and the transfers rely on explicit calls to NVIDIA CUBLAS and CUDA [146],
respectively.

Figure 2.18 reports the complete performance and C-state traces, obtained with Extrae and
PMLib, for the execution of the LU factorization on wt ivy. In principle, one could expect that,
during the execution of a GPU kernel (Trsm gpu and Gemm gpu), the operating system promoted
the idle CPU to a power-saving sleep C-state (C1 or deeper). However, the traces in the top and
middle plots show that this is not the case, and this is clearly detected in the discrepancy trace in
the bottom plot of the figure. In [28] it is showed how to avoid this power-costly behaviour of the
CUDA runtime, by appropriately invoking routine cudaSetDeviceFlags.

Impact of power sinks

The previous two examples demonstrate the potential of the inspection tool to easily detect
discrepancies between the performance and C-state traces that identify potential power-sinks. Fur-
thermore, they also illustrate the interface of the inspection tool, by showing how this information
is reported in the form of a trace that can visualized using Paraver.

36

2.4. AUTOMATIC DETECTION OF POWER SINKS

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

0 us 56.342.740 us

Watts
189

30

0 us 56.342.740 us

0 us 56.342.740 us

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

56.342.740 us0 us

Figure 2.17: Performance (top), power (top-middle), C-states (bottom-middle) and discrepancies
(bottom) traces, visualized with Paraver, for the power-aware concurrent execution
of ILUPACK.

Computation Polling C0 C1 C6 Discrepancies

THREAD 1 72.00% 25.56% 99.33% 0.29% 0.39% 27.49%

THREAD 2 96.45% 2.50% 99.25% 0.26% 0.50% 4.77%

THREAD 3 59.90% 39.14% 99.53% 0.10% 0.37% 40.59%

THREAD 4 70.81% 28.13% 99.48% 0.10% 0.42% 30.11%

THREAD 5 74.00% 25.14% 99.29% 0.90% 0.61% 26.61%

THREAD 6 99.18% 0.00% 99.34% 0.22% 0.45% 0.00%

THREAD 7 61.52% 37.17% 99.53% 0.12% 0.35% 38.84%

THREAD 8 75.03% 23.69% 99.27% 0.10% 0.64% 25.74%

Table 2.6: Example of analytical summary of the performance, C-state and discrepancy traces
reported by the inspection tool.

In addition, the analyzer also elaborates some simple statistical information, in terms of an
analytical report for the global execution or a certain period of the execution; see Table 2.6.
This type of information can be next processed to obtain a rough estimation of the costs of the

37

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

Thread 1

0 us 12.470.206 us

Thread 1

0 us 12.470.206 us

Thread 1

0 us 12.470.206 us

Figure 2.18: Performance (top), C-states (middle) and discrepancies (bottom) trace, visualized
with Paraver, for the concurrent execution of the LU factorization in libflame.

power sinks. Assume for simplicity that there is only one type of sink during the execution of
the inspected application. The analytical report from the analyzer then offers an estimate of how
long certain threads/cores spent doing “useless” work and, therefore, wasting power (e.g., up to
40.59% for thread 3 in Table 2.6). Of course, in order to obtain a measure of the overall energy
cost, we need to take into account what is the power rate of a core that remains in a power-saving
sleep state. That estimation is easy to obtain as part of an independent and simple experiment.
The hard part, though, is to calibrate the opposite situation, i.e., how much of the total power
consumption that is in the power trace corresponds to the “power-wasting” core(s). Unfortunately,
our current sampling means only offers either the total power consumption (using a wattmeter) or,
alternatively, an approximation to the power consumption per CPU socket (using the RAPL power
model), while we would like to have accurate estimates of power consumption per core instead.
To overcome this difficulty, we can still design a special test that mimics the power sink that
was detected in a particular experiment, and which could give us the sought-after estimate. In
ILUPACK, for example, this would be a busy-wait on a condition variable, performed by a single
core, which would allow us to evaluate the power cost of this process. For the dense linear algebra
factorization, on the other hand, the test should consider a sequence of long CUDA invocations,
and the appropriate configuration of the CUDA runtime to reproduce the power sink observed for
this application.

Armed with these estimates, by simply calculating the differences between the power rate due
to these power-hungry behaviour/configuration and that of the power-saving state, as well as the
total duration of the power sinks, we can obtain a rough approximation of the energy-costs due to
hotspots, and the potential savings that a more power-friendly implementation and/or configuration
of the software could yield. Note that all this elaboration only needs a reliable report on the duration
of the power bottlenecks and the data from the calibration experiments.

38

2.5. CONCLUDING REMARKS

2.5 Concluding Remarks

In this chapter we have presented a power-tracing framework composed of internal/external
wattmeters, a power tracing modular package, power-related modules, etc., that is easily integrable
with standard performance tracing and visualization tools. The framework offers useful information
on power usage of scientific workloads running on a variety of parallel platforms, from MPI applica-
tions operating on a moderate-scale cluster to multi-threaded codes that run on a multicore+GPU
platform. We have also described our contributions, which expand the framework to adapt it to
new processor technologies. Concretely, these additions obtain power and energy measurements
reading the RAPL counters, and also with the NVML and MIC Management libraries.

As an additional contribution, we have investigated the use of power/temperature estimates
offered by recent processor technology vs the exploitation of a professional data acquisition system.
While the former approach is extremely appealing in that it comes for free with the processor, the
fact that recording the power information can only be done from the same platform, using the
same resources that are involved in the application execution, necessarily results in an overhead
that may impair the accuracy of the results. In both cases, we miss the possibility of accessing
traces of the power dissipation per core. These two drawbacks seem to be solved by alternative
processor technology like that present in the IBM Power7, where power information is available per
core, and it is recorded by a separate device, in principle without any overhead.

Moreover, we have introduced an extension of the power tracing tool PMLib that can be
leveraged to automatically detect power bottlenecks during the execution of an application by
comparing the performance and the core C-state traces. The analysis is performed in parallel,
using Python Pool class, and the user can configure the process, for instance, to adjust the part of
the trace to inspect, the length of the analysis interval, and the detection threshold, among others.
We have used this framework to develop more energy-efficient HPC linear algebra libraries, which
leverage idle periods during the execution using dynamic frequency-voltage scaling and avoiding
busy-waits.

Finally, we have exemplified the potential of the framework using two linear algebra codes.
These studies reveal the possibilities that the framework offers to analyze the behaviour of the
applications and detect the power bottlenecks as well as the impact of these power sinks.

39

CHAPTER 2. AUTOMATIC POWER-PERFORMANCE ANALYSIS FRAMEWORK

40

CHAPTER 3

Solution of Large Sparse Linear Systems and ILUPACK

Large sparse linear systems arise in many application areas such as partial differential equations,
quantum physics, or problems from circuit and device simulation. They all share the same central
task that consists in efficiently solving large sparse systems of equations. For a large class of
application problems, sparse direct solvers have proven to be extremely efficient. However, the
enormous size of the underlying applications arising in 3-D PDEs or the large number of devices in
integrated circuits currently requires fast and efficient iterative solution techniques, and this need
will be exacerbated as the dimension of these systems grows. This in turn demands for alternative
approaches such as, approximate factorization techniques, combined with iterative methods based
on Krylov subspaces, which have become an attractive alternative for these kinds of application
problems. Specifically, in this chapter, we revisit the different solution methods, focusing on CG
and PCG, and we describe various preconditioning techniques. Finally, we introduce the ILUPACK
library, that contains highly efficient multi-level incomplete LU factorization solvers, based on
Krylov subspace methods, for large-scale sparse application problems.

The chapter is divided as follows. Section 3.1 reviews the solution methods and the CG.
Section 3.2 describes the PCG and analyzes the ILU Preconditioning Techniques. Section 3.3 offers
an introduction to ILUPACK, the numerical package for solving large systems of equations, which
has been parallelized in this thesis to improve its performance and energy efficiency.

3.1 Solving Sparse Linear Systems

A sparse matrix is defined as a matrix which has very few non-zero elements, such that special
techniques can be utilized to take advantage of this property. These sparse matrix techniques exploit
the idea that the zero elements do not need to be stored and, therefore, one of the key issues is
to define data structures for these matrices that are well suited for the efficient implementation
of standard solution methods, which can yield huge computational savings. On the one hand, a
formal characterization, commonly used, defines that a matrix A ∈ Rn×n is sparse if

nnz(A) = O(n)

where nnz(A) is the number of non-zero entries of A = (aij). On the other hand, there is another
principle which characterizes A as a sparse matrix: there is a number p� n, such that every row

41

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

and column of A has at most p non-zero entries. The density of a matrix is a term closely related to
the sparse notion, which is defined as the quotient nnz(A)/n2. Another term is the pattern of non-
zero elements of a matrix A, which is defined as the set A = {(i,j) : ai,j 6= 0} ⊆ {1,...,n}×{1,...,n},
and, thus, nnz(A) coincides with the cardinality, |A|, of the set A.

The solution of sparse linear systems of large dimension consists in finding the solution x ∈ Rn
of the linear equation system

Ax = b, (3.1)

where A ∈ Rn×n is a sparse matrix of large dimension and arbitrary structure, and b ∈ Rn is the
vector of independent terms.

In this section we classify the methods for the solution of sparse linear systems, explaining their
advantages, disadvantages and utility. Moreover, we explain in more detail the CG method, which
is the object of this dissertation.

3.1.1 Classification of the solution methods

Traditionally, the methods for the solution of linear systems have been divided into two groups:
direct and iterative. The main difference between them is that, in the first, the cost of the algorithm
is known beforehand because they reduce the matrix to a canonical form by using elementary
transformations, while in the second, the number of iterations and the final cost of the method can
change depending on the properties of the matrix and the desired accuracy of the solution.

In the 60s, 70s and 80s, direct methods [63] were the frequent choice for the solution of large
systems, due to their robustness and predictable behaviour. However, in the last decades itera-
tive methods [166] have increased their popularity thanks to several factors. First, the size and
complexity of the new generation of systems arising from the common applications have increased
significantly. Second, the robustness, reliability, and efficiency of the iterative methods have im-
proved remarkably thanks to the advances in the preconditioning techniques, being the most critic
element to improve the performance of these kind of methods. Last, it is easier to develop parallel
iterative methods than parallel versions of direct methods, because of the features of the main
operations of each one.

Direct methods

Direct methods for the solution of linear systems transform the problem (3.1) into a simpler
one, whose solution is less difficult. Many of these methods are based in the LU factorization or
Gaussian elimination [88, 183]. This process decomposes the coefficient matrix of the system (3.1)
A into the product of two triangular matrices, L ∈ Rn×n unit lower triangular and U ∈ Rn×n
upper triangular, such that A = LU . Afterwards, the solution of (3.1) can be obtained by solving
two linear systems with triangular structure, with the triangular factors as coefficient matrices;
particularly, first Ly = b, and then Ux = y.

The fact that both the transformation and the subsequent resolution of the reduced system are
calculated in a number of steps known a priori, combined with the numeric robustness of these
methods, makes them very useful for solving systems where the coefficient matrix is dense. When
the coefficient matrix is large and sparse, the use of these methods usually introduces new non-
zero elements in the transformation process, which increase the cost of the process. Therefore, the
implementation of direct methods for sparse matrices aims to reduce the computational and storage
cost of Gaussian elimination, avoiding operations with the zero entries and minimizing the fill-in
produced during the factorization process [63, 72]. The application of these methods is based on
the use of re-orderings, to reduce the fill-in, and the partitioning of the system, to identify dense

42

3.1. SOLVING SPARSE LINEAR SYSTEMS

blocks in the factors. The block structure of the factors enables the use of basic linear algebra
subprograms (BLAS3 [71]), which is essential to obtain high performance in modern superscalar
processors. However, the success of the resultant methods depends on their capacity to efficiently
manage the fill-in. Although direct methods are capable of solving reasonably large systems of
equations, their spatial and temporal costs scale poorly with the problem dimension, especially for
matrices arising from the discretization of tridimensional PDEs, due to the massive fill-in produced
in the factorization. In summary, these methods are extremely reliable and numerically robust,
and besides, it is often possible to predict the computational and storage resources they require.
For these reasons, they are usually chosen to solve systems of equations in industrial environments,
where the key is reliability, but the fill-in is not too high.

Iterative methods

For linear systems of equations with extremely large dimension and/or in which the level of
fill-in of direct methods is very high, iterative methods are the only feasible alternative. These
methods solve the system through a sequence of operations which are applied to an initial solution,
so that the final solution is progressively approximated. These operations are grouped into phases,
or iterations, and the results corresponding to the steps of one iteration are the entry for the next
iteration. This property makes these methods especially efficient for the solution of large linear
systems of equations, because the process can be stopped when the desired precision is achieved.
Although iterative methods require less memory, and usually execute less arithmetic operations
than direct methods, they are also less reliable. Depending on the application, iterative methods
sometimes fail, and usually, it is necessary the application of preconditioning techniques, which
modify the numerical properties of the system, to accelerate the convergence. The preconditioner
cannot be explicitly applied to the coefficient matrix, because it would modify its non-zero pattern.
Therefore, a new step is introduced in the iterative process which applies the preconditioner during
the resolution process. The advantages of iterative methods, with respect to direct methods, are
their high scalability when the dimension of the problem increases and the ease to design and
implement parallel versions.

There exists a huge variety of iterative methods, each one with specific features, which can be
classified as follows:

• Stationary iterative methods: The major research efforts on these methods were made
between the 50s and the 70s, yielding popular methods such as Jacobi, Gauss-Seidel, SOR
and SSOR [166]. These methods were applied to solve linear systems arising from the dis-
cretization of eliptic PDEs. The stationary iterative methods are defined by means of the
following mathematical recursion:

x(k+1) ← Tx(k) + c, with k = 0,1,2, . . . (3.2)

where x(k) denotes the approximation to the solution of Ax = b in the k-th iteration, T is a
predefined iteration matrix (fixed) which characterizes the particular method, c is a predefined
vector (fixed) and x(0) is the initial approximation. Despite its mathematical refinement,
stationary methods present serious limitations, for example, the lack of applicability or the
parameter’s dependence, because it is difficult to find an appropriate value for them without
having specific information of the eigenvalue’s spectrum of A. Therefore, these methods
can converge very slowly, or even can not converge. In [98], Hageman and Young explain
several procedures to adaptively estimate the value of these parameters, as well as the use of

43

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

acceleration techniques based on the generation of Krylov subspaces. That reference marks
the transition between the first and the second periods in the history of iterative methods.

• Projection methods: The research activity in these methods started in the mid-70s. The
majority of these methods are based on the generation of Krylov subspaces, and the associated
variables contain information that varies in each iteration. The most relevant methods in this
group are CG, BICG, BICGSTAB and GMRES [167].

The starting point of any projection method is the linear system Ax = b, and a vectorial
subspace K of dimension k, such that k < n, generated by a base of vectors V = {v1, . . . , vk}.
The main objective is to find an approximation to the solution x̂ inside the subspace K, for
which x̂ = V y, with y ∈ Rk. One of the most accepted methods to calculate y is to force the
restriction that the residual vector, r = b−Ax̂, is orthogonal to another subspace L generated
by a base of vectors W = {w1, . . . , wk}, such that

W T · (b−AV y) = 0. (3.3)

Finding y from (3.3), we obtain a k × k linear system, y = (W TAV)−1 ·W T b, where W TAV
must be invertible. Algorithm 3.1 shows a basic scheme of a projection method.

Algorithm 3.1 Projection method prototype

1: while not convergence do
2: Select the subspaces K and L
3: Choose the bases V = {v1, . . . , vk} and W = {w1, . . . , wk}
4: r := b−Ax
5: y := (W TAV)−1W T r
6: x := x+ V y
7: end while

The relation between the subspaces K (search subspace) and L (constraints subspace) defines
the type of projection that is employed. If K = L the projections are orthogonal, while in the
case that K 6= L the projections are oblique. It is worth to mention that in the search of an
approximation to the solution, the dimension of the subspaces is incremented by one in each
step.

Next, we show how to introduce the Krylov subspace methods as an alternative inside projec-
tion methods. Mathematically, all the Krylov subspace methods calculate, in each iteration
k = 1,2, . . ., an approximation x(k) to the solution of Ax = b inside the subspace

x(k) = x(0) +Kk(A, r(0)) = x(0) + span{r(0), Ar(0), A2r(0), . . . , Ak−1r(0)}, (3.4)

where x(0) is a starting solution, Kk(A, r(0)) is the Krylov subspace of dimension k, generated
by the matrix A and the initial residual r(0) = b−Ax(0), and span{r(0), Ar(0), . . . , Ak−1r(0)}
is the subspace generated by the corresponding vectors r(0), Ar(0), . . . , Ak−1r(0). The distinct
methods are defined by the restrictions they impose to extract x(k) from this subspace. The
following four approaches are the most common:

1. The Ritz-Galerkin approximation chooses x(k) so that the residual r(k) = b − Ax(k)

is orthogonal to the subspace Kk(A, r(0)). This approximation is the basis of popular
methods such as CG, Lanczos, FOM and its variants IOM and DIOM.

44

3.1. SOLVING SPARSE LINEAR SYSTEMS

2. The minimum residual approximation calculates x(k) in order that r(k) = b − Ax(k) is
orthogonal to the subspace A · Kk(A, r(0)) or, similarly, in such a way that ‖ b−Ax(k) ‖
is minimum between all the vectors of the subspace Kk(A, r(0)). GMRES, MINRES and
ORTHODIR are based on this approximation.

3. The Petrov-Galerkin approximation computes x(k) so that r(k) = b−Ax(k) is orthogonal
to another appropriate subspace of k dimension, Lk. Bi-CG and QMR are obtained
when Lk = Kk(AT , r(0)).

4. The minimum error approximation determines x(k) forcing that ‖ x−x(k) ‖2 is minimum
between the vectors of the subspace AT · Kk(AT , r(0)). SYMMLQ and GMERR belong
to this class.

It is important to note that there are other methods like CGS, Bi-CGSTAB and FMGRES
which combine ideas from these approximations. Their implementation details, mathematical
basis, and numerical analysis can be found in [32, 40, 56, 166].

• Multilevel methods: These methods appeared at mid-70s to improve the efficiency of the
stationary iterative methods [55, 57, 97], and were designed to rapidly and efficiently solve
linear systems arising from the discretization of PDEs. Multilevel methods, which exploit
discretizations with a hierarchy levels of a given problem to obtain optimal convergence,
can be applied as iterative methods, or as preconditioners of CG or other methods based
on the generation of Krylov subspaces. In this family, we can find the multigrid methods,
which use meshes instead of levels, and revolve around a stationary method such as Jacobi
or Gauss-Seidel. Stationary methods reduce very slowly the magnitude of the low frequency
components of the error, but they are really fast to reduce the high frequency components.
Multigrid methods exploit the possibility of building a coarser system, and transform the low
frequency components of the error of the original system into high frequency components of
the coarser system, which can be reduced using a stationary method. Applying this strategy
recursively through different mesh sizes, we can obtain a method with a computational cost
lineally dependent on the problem dimension. This multigrid method property is called
algorithmic scalability and it is generalized for multi-level methods.

The algorithmic scalability of multi-level methods is crucial to develop parallel algorithms
which can maintain their efficiency when the problem size increases in the same proportion
as the number of processors. Furthermore, the intrinsic hierarchy of the multi-level methods
allows their adaptation to the memory hierarchy, as well as to the different kind of parallelism
available in high performance computing platforms. This adaptation is properly produced by
combining the number of levels and the size of the problems to be solved in each level. These
properties have favoured the use of the AMG methods in the actual software packages. The
intrinsics of the parallelization of AMG can be found in [186].

• domain decomposition methods: This family of methods became popular at 80s, mainly
due to the emergence of parallel computing platforms [157, 175], but nowadays, they (and
their multi-level variants) are only used as preconditioners. Mathematically, we can consider
these methods as an extension of block preconditioners like Jacobi or Gauss-Seidel [166]. They
can also be considered as a general paradigm to decompose a problem into smaller problems,
with the purpose of applying parallel processing. More information about these methods can
be found in [133, 175].

45

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

3.1.2 The Conjugate Gradient method

In this thesis we focus on the Conjugate Gradient (CG) method, because this is the solver
integrated in the ILUPACK library to tackle sparse SPD linear systems. The CG algorithm was
proposed in December of 1952 by Hestenes and Stiefel [103], and it is one of the best known iterative
techniques for solving sparse SPD linear systems. The method is a realization of an orthogonal
projection technique onto the Krylov subspace Kk(A, r0), where r0 is the initial residual, and the
residuals follow the Ritz-Galerkin approximation. Because of A is symmetric, some simplifications
can be applied to derive the method.

There are different alternatives to obtain CG; one of them assumes that k steps of the Lanczos
algorithm have been completed. As a result of the iterative process, we obtain a tridiagonal matrix
Tk, applying the orthonormal basis Vk of the Krylov subspace Kk(A, r0) onto the matrix A [166],

Kk(A, r0) = span{Vk} , V T
k Vk = Ik ⇒ V T

k AVk = Tk , Tk is tridiagonal.

The derivation of the method starts from the LU factorization of the tridiagonal matrix, Tk =
LkUk ≡

α1 β2
β2 α2 β3

. . .
βk−1 αk−1 βk

βk αk

 =

1
λ2 1

. .
λk−1 1

λk 1

×

η1 β2

η2 β3
. .

ηk−1 βk
ηk

 . (3.5)

Applying the expression included in the Algorithm 3.1, the approximation to the solution can
be rewritten as,

xk = x0 + Vk(V
T
k AVk)

−1V T
k r = x0 + VkT

−1
k (V T

k r) = x0 + VkU
−1
k L−1k (β1e1),

and reorganizing the operands conveniently, the previous expression is modified as follows,

Pk = VkU
−1
k , zk = L−1k (β1e1) ⇒ xk = x0 + Pkzk.

The definition of Pk allows to describe a recurrence which relates the vectors of Vk and Pk,

pk = η−1k [vk − βkpk−1],

in which the scalars are directly obtained from (3.5),

λk =
βk
ηk−1

, ηk = αk − λkβk. (3.6)

On the other hand, the definition of zk and its decomposition,

xk =
[
zk−1

ζk

]
, ζk = −λkζk−1,

allow to obtain another recurrence to update the solution of the system,

xk = xx−1 + ζkpk.

46

3.1. SOLVING SPARSE LINEAR SYSTEMS

These expressions are the basis to define CG as a variant of the Lanczos method for the solution
of linear systems.

We note that this method has been obtained by applying Gaussian elimination without pivoting
on a triangular system, so it can fail if the chosen pivot is zero. There are several alternatives to
solve this problem such as, for example, the use of QR or LQ factorizations, the incorporation of
pivoting,... [166].

Another alternative to derive CG exploits the numerical properties of the vectors involved
in the method. It is known that the residual vectors are orthogonal, given that rk = σkvk+1, but
we do not know about the orthogonality of the auxiliary vectors, pk. If we apply the definition of
Pk on the product P Tk APk,

P Tk APk = (VkU
−1
k)TAVkU

−1
k = U−Tk V T

k AVkU
−1
k = U−Tk TkU

−1
k = U−Tk Lk,

we can observe that the product, which result should be a symmetric matrix, is also equal to the
product of two lower triangular matrices, which is lower triangular. The only possibility to achieve
both conditions is that the product is a diagonal matrix, and therefore the auxiliary vectors are
A-orthogonal, or conjugate.

These properties can be used to derive CG, starting from the recursions relating the auxiliary
vectors with the solution vectors and the residual vectors,

xk+1 = xk + αkpk, rk+1 = rk − αkApk. (3.7)

Exploiting the residuals orthogonality, we can calculate the value of αk ,

rTk rk+1 = rTk (rk − αkApk) = 0 ⇒ αk =
rTk rk

rTk Apk
. (3.8)

The auxiliary vectors, pk+1, are defined as a lineal combination of rk+1 and pk,

pk+1 = rk+1 + βkpk, (3.9)

from which it is possible to derive an expression that modifies the definition of αk,

rTk Apk = (pk − βk−1pk−1)TApk = pTkApk ⇒ αk =
rTk rk

pTkApk
. (3.10)

Moreover, taking advantage of the A-orthogonality of the auxiliary vectors, we can multiply (3.9)
by Apk to calculate the value of βk,

βk = −
rTk+1Apk

pTkApk
, (3.11)

on which we can apply the definition of the residual vectors that appears in (3.7), obtaining

Apk =
1

αk
(rk+1 − rk) ⇒ βk = − 1

αk

rTk+1(rk+1 − rk)
(pTkApk)

=
rTk+1rk+1

rTk rk
. (3.12)

Figure 3.1 displays the final algorithm, in which the scalar αk does not coincide with the elements
of Tk.

47

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

Initialize r0, p0, x0, σ0, τ0; j := 0
while (τj > τmax) Iterative CG solve

O1. vj := Apj O1. SpMV
O2. αj := σj/p

T
j vj O2. dot

O3. xj+1 := xj + αjpj O3. axpy
O4. rj+1 := rj − αjvj O4. axpy
O5. σj+1 := rTj+1rj+1 O5. dot

O6. βj := σj+1/σj O6. scalar operation
O7. pj+1 := rj+1 + βjpj O7. xpay (similar to axpy)
O8. τj+1 :=‖ rj+1 ‖2=

√
σj+1 O8. 2-norm

j := j + 1
end while

Figure 3.1: Algorithmic formulation of CG. Here, τmax is an upper bound on the relative residual
for the computed approximation to the solution.

3.2 Preconditioned CG

The methods presented in previous section are well founded theoretically, but they usually suffer
from slow convergence for problems which arise from typical applications such as fluid dynamics or
electronic device simulation. In all these cases, preconditioning is a key ingredient for the success
of Krylov subspace methods. This section reviews the concept of preconditioning and details how
to apply preconditioning to CG in order to improve its convergence. Later, we focus on the ILU
preconditioning techniques because they are applied in ILUPACK.

3.2.1 Introductory concepts of preconditioning

Lack of robustness is a widely recognized weakness of iterative solvers. In general, these methods
quickly converge if the matrix of the system is a good approximation to the identity matrix In,
but this condition rarely fulfills. This drawback hampers the acceptance of iterative methods in
industrial applications despite their intrinsic appeal for the solution of very large linear systems.
Both the efficiency and robustness of iterative techniques can be improved by integrating some
sort of preconditioning, which is simply a means of transforming the original linear system into one
which has the same solution, but which is usually easier to solve with an iterative solver. In general,
the reliability of iterative techniques, when dealing with various applications, depends more on the
quality of the preconditioner than on the particular Krylov subspace method used.

Let us consider the options available for preconditioning a system. The first step is to find a
preconditioning matrix M , which can be defined in many different ways as long as if satisfies a
few minimal requirements. From a practical point of view, the most important requirement for
M is that the linear system My = z shoult be inexpensive to solve, because the preconditioned
algorithms require a linear system solution with the matrix M at each step. Moreover, from a
numerical point of view, M should be clearly nonsingular, and it should be related to A in some
sense, so that the new matrix (M−1A) is almost the identity.

Once a preconditioning matrix M is available, there are three known ways of applying the
preconditioner [166]. The precondiotioner can be applied from the left, leading to the preconditioned
system:

M−1Ax = M−1b . (3.13)

48

3.2. PRECONDITIONED CG

Alternatively, it can also be applied from the right:

AM−1x̂ = b, x ≡M−1x̂. (3.14)

Note that the above formulation amounts to making the change of variables x̂ = Mx, and solving
the system with respect to the unknown x̂.

Finally, a common situation is when the preconditioner is available in the factored form M =
MLMR where, typically, ML and MR are triangular matrices. In this situation, the preconditioning
can be split as

M−1L AM−1R x̂ = M−1L b, x ≡MR−1x̂. (3.15)

When the original matrix is symmetric it becomes imperative to preserve symmetry, and the
split preconditioner seems mandatory. However, there are other ways of preserving symmetry, or
rather to take advantage of symmetry, even if M is not available in a factored form.

Finding a good preconditioner to solve a given sparse linear system is often viewed as a com-
bination of art and science. Theoretical results are rare and some methods work surprisingly well,
often despite expectations. Usually, a preconditioner can be defined as any subsidiary approximate
solver which is combined with an outer iteration technique, typically one of the Krylov subspace
iterations. For example, scaling all rows of a linear system to make the diagonal elements equal to
one is an explicit form of preconditioning. The resulting system can be solved by a Krylov subspace
method and may require fewer steps to converge than with the original system (although this is
not guaranteed). As another example, solving the linear system

M−1Ax = M−1b,

where M−1 is some complicated mapping that may involve Fast Fourier Transform (FFT) trans-
forms, integral calculations, and subsidiary linear system solutions, may be another form of pre-
conditioning. Here, it is unlikely that the matrices M and M−1A can be computed explicitly.
Instead, the iterative processes operate with A and with M−1 whenever needed. In practice, the
preconditioning operation M−1 should be inexpensive to apply to an arbitrary vector.

In general, the preconditioning techniques can be classified into two groups with the following
characteristics:

• specific-purpose techniques: These techniques are designed for a specific set of applica-
tions, such as those managed by PDEs of a concrete type. In many cases, it is possible to
detect and use information derived from the physics of the problem to construct very efficient
preconditioners. These techniques require a complete knowledge of the subjacent application,
and minor changes in the application can sometimes jeopardize the efficiency of the method.
In this category we can find the multigrid [134, 181] and domain decomposition [157, 175]
techniques.

• general-purpose techniques: These techniques are strictly algebraic, and calculate M
from the matrix of the original system, without any information on the application. Although
they do not obtain the optimal solution, they offer more than acceptable performance for a
wide range of applications. The algebraic preconditioners are easier to compute and use, and
it is usually possible to improve their efficiency with specific adjustements for each problem.
Inside this group we can encounter preconditioners designed for a specific class of matrices,
as for example, preconditioners for SPD matrices or M -matrices [166]. The preconditioning
techniques based on the approximate factorization of A, or its inverse A−1, such as ILU [166]
(Incomplete LU) preconditioners or SPAINV [166] (SParse Approximate Inverse) precondi-
tioners respectively, are examples of this class of preconditioning techniques. We dive deeper
into the ILU preconditioners in Section 3.2.3.

49

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

3.2.2 Definition of PCG

Consider a SPD matrix A and suppose that a preconditioner M is available. We can then
assume that M is also SPD. Then, one can precondition the system in any of the three manners
shown in the previous section, i.e., as in (3.13), (3.14), or (3.15). Note that, in general, the first two
systems are no longer symmetric. In this section we consider strategies for preserving symmetry
when introducing the preconditioner in the CG [166].

When M is available in the form of an incomplete Cholesky factorization,

M = LLT ,

then a simple way to preserve symmetry is to use the “split” preconditioning option (3.15) which
yields the SPD matrix,

L−1AL−T x̂ = L−1b, x = L−T x̂. (3.16)

However, it is not necessary to split the preconditioner in this manner in order to preserve symmetry.
Observe that M−1A is self-adjoint for the M -inner product,

(x, y)M ≡ (Mx, y) = (x,My)

since

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M(M−1A)y) = (x,M−1Ay)M .

Therefore, an alternative is to replace the usual Euclidean inner product in the CG algorithm by
the M -inner product.

If the CG algorithm is rewritten with this new inner product, and rj = b − Axj denotes the
original residual and zj = M−1rj the residual for the preconditioned system, the scalars calculated
in CG can be obtained as follows

αk =
(zk,zk)M

(M−1Apk,pk)M
=

(rk,zk)

(Apk, pk)
, βk =

(zk+1, zk+1)M
(zk, zk)M

=
(rk+1, zk+1)

(rk, zk)
.

These expressions are the basis to define the preconditioned version of CG, corresponding to
the algorithm in Figure 3.2.

3.2.3 ILU Preconditioning Techniques

The triangular factors obtained from the LU factorization of a sparse matrix A are usually denser
than A, due to the fill-in produced during the factorization process. Despite the development of very
efficient reordering heuristic techniques to reduce the fill-in [63, 72], direct methods are not feasible
to solve extremely large systems of equations, due to the computational and storage resources they
require. A simple and intuitive solution to tackle this problem consists in rejecting some elements of
the matrices whose value changes from zero to non-zero during the factorization process, obtaining,
thus, two triangular factors, L̃ ∈ Rn×n lower triangular unit and Ũ ∈ Rn×n upper triangular unit,
so that A ≈ L̃Ũ . The process that obtains this approximation is called ILU factorization of A, and
L̃ and Ũ are the incomplete factors of A. Subsequently, M = L̃Ũ can be applied as preconditioner
of (3.1) in the hope that M−1A ≈ I.

In this section, we introduce the basic methods and techniques that can be applied to derive
preconditioners from ILU factorizations of A [131]. We first describe a general ILU preconditioner,
and then we discuss the ILU(0) factorization, the simplest form of the ILU preconditioners. Finally,
we show how to obtain more accurate factorizations, some of which are used in ILUPACK.

50

3.2. PRECONDITIONED CG

O0. A→M O0. preconditioner computation
Initialize r0, p0, x0, σ0, τ0; j := 0
while (τj > τmax) Iterative CG solve

O1. vj := Apj O1. SpMV
O2. αj := σj/p

T
j vj O2. dot

O3. xj+1 := xj + αjpj O3. axpy
O4. rj+1 := rj − αjvj O4. axpy
O5. zj+1 := M−1rj+1 O5. preconditioner application
O6. σj+1 := rTj+1zj+1 O6. dot

O7. βj := σj+1/σj O7. scalar operation
O8. pj+1 := zj+1 + βjpj O8. xpay (similar to axpy)
O9. τj+1 :=‖ rj+1 ‖2 O9. 2-norm

j := j + 1
end while

Figure 3.2: Algorithmic formulation of PCG. Here, τmax is an upper bound on the relative residual
for the computed approximation to the solution.

Gaussian Elimination and its approximate variant

A general algorithm for building ILU factorizations can be derived by performing Gaussian
elimination and dropping some elements in predetermined non-diagonal positions [88, 183]. Starting
with A0 = A, the process applies, at each iteration k = 1,2, . . . ,n − 1, a Gaussian transform to
Ak−1 ∈ Rn×n, which is the resultant matrix of applying the k − 1 previous transforms to A0.
This transform annihilates the elements of the k-th column of Ak−1 which are below the main

diagonal. If we denote as Ak = (a
(k)
ij) the elements of the resultant matrix after applying k

Gaussian transformations, the effect of the transformation in the k-th iteration can be expressed
as the following matrix product

Ak = L−1k Ak−1, (3.17)

with

L−1k = I − 1

a
(k−1)
kk

(
0k

a
(k−1)
∗k

)
eTk , (3.18)

and the vector a
(k−1)
∗k ∈ Rn−k,1 is made by the elements below the main diagonal of the k-th column

of Ak−1:

a
(k−1)
∗k = (a

(k−1)
k+1k · · · a

(k−1)
nk)T . (3.19)

It is easy to demonstrate that with L−1k defined as in (3.18) and k = 1,2, . . . ,n− 1, the application
of n− 1 Gaussian transforms to A0 = A reduce this matrix to an upper triangular matrix:

L−1n−1 . . . L
−1
1 A = U → A = (L1 . . . Ln−1)U = LU . (3.20)

Furthermore, given that

Lk = I +
1

a
(k−1)
kk

(
0k
ak−1∗k

)
eTk (3.21)

it is easy to verify that L = L1 . . . Lm−1 is lower triangular unit.

51

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

Working with the expressions (3.17)–(3.21), the derivation of the right-looking algorithmic vari-
ant of the LU factorization (in the Algorithm 3.2) is immediate. The elements of L and U are
denoted, respectively, as lij and uij . In each iteration of the external loop, the strictly lower tri-
angular part of the k-th column of L (line 3) satisfies (3.21), and also the k-th row of U (line 4),
which coincides with the k-th row of Ak−1. Afterwards, the two nested internal loops are responsi-
ble of applying the Gaussian transform corresponding to the k-th iteration, that is calculating Ak
according to (3.17).

At this point of the dissertation, we can analyze how the fill-in is produced during the LU
factorization of a sparse matrix A. Consider that A, Ak, L and U respectively denote the patterns
of non-zero elements of A, Ak, L and U , where the last two matrices are calculated by the Algo-
rithm 3.2. The update in line 7 of the Algorithm 3.2 produces a new element (i,j) in the Ak set
(and, therefore, in L ∪ U) if (i,k) ∈ L, (k,j) ∈ U and (i,j) /∈ Ak−1. This new element is a fill-in,
though this term is also used to refer to the (L∪ U)−A set, i.e, to refer the positions corresponding
to non-zero elements in the factors associated to zero elements in A.

LU factorization algorithms for sparse matrices exploit two observations with the objective of
reducing computational and storage cost:

1. It is not necessary to carry out the update if (i,k) /∈ L or (k,j) /∈ U .

2. It is not necessary to calculate neither store element lij if (i,j) /∈ A, and (i,k) /∈ L or (k,j) /∈ U ,
for k = 1,2, . . . ,i− 1.

Algorithm 3.2 Right-looking (or KIJ) algorithmic variant of the LU factorization

1: A0 ← A
2: for k = 1 : n− 1 do
3: lik ← a

(k−1)
ik /a

(k−1)
kk with i = k + 1 : n

4: ukj ← a
(k−1)
kj with j = k : n

5: for i = k + 1 : n do
6: for j = k + 1 : n do

7: a
(k)
ij ← a

(k−1)
ij − likukj

8: end for
9: end for

10: end for

The LU factorization becomes an ILU factorization when some elements of the matrices involved
in the elimination process are rejected. The different basic techniques to derive ILU preconditioners
are distinguished by the strategy they employ to reject those elements. For example, we can reject
the elements situated in those positions which do not belong to a static pattern P. The pattern P
must include the positions corresponding to the elements in the main diagonal ((1,1),(2,2),...,(n,n)),
since, otherwise, the elimination process fails due to a division by zero.

We next review the procedure to incorporate the discard of elements into the Gaussian elim-
ination process, and we derive the relationship between the factors that are obtained when this
process is completed and the coefficient matrix of the system. For that, we assume that the dis-
carding of elements is done following a preestablished pattern P, though the same conclusions can
be extracted using other criteria.

In the k-th iteration, the elimination process starts from an approximation to Ak−1, denoted
by Âk−1. Afterwards, a Gaussian transform is applied to Âk−1: Ãk = L̃−1k Âk−1, and, in order to

limit the number of non-zero elements of Ãk, we reject certain elements of Ãk as, for example, those

52

3.2. PRECONDITIONED CG

situated in the positions that do not belong to P. If Âk is the matrix resulting from the rejections
in Ãk, then

Âk = Ãk −Rk, (3.22)

with Rk = (r
(k)
ij) defined as follows

r
(k)
ij =

0 if 1 ≤ i ≤ k or 1 ≤ j ≤ k,
0 if k < i ≤ n, k < j ≤ n and (i,j) ∈ P,
ã
(k)
ij if k < i ≤ n, k < j ≤ n and (i,j) /∈ P.

(3.23)

The first k rows and columns of Rk are zero because the Gaussian transform Ãk = L̃−1k Âk−1 only
modifies (updates) elements in the resultant block of the intersection of the n − k last rows and

columns. Therefore, the elements of Rk corresponding to this block are zero or equal to â
(k)
ij ,

depending on whether (i,j) belongs to P or not.
Taking into account the previous considerations, it is possible to derive the relationship between

Ã0 = A0 = A and Ân−1, through the recurrence

Âj = L̃−1j Âj−1 −Rj , j = 1,2, . . . ,n− 1. (3.24)

Thus, combining the corresponding terms, we have that

Ũ = Ân−1 = L̃−1n−1 · · · L̃
−1
1 Â0 − L̃−1n−1 · · · L̃

−1
2 R1 − · · · − L̃−1n−1 · · · L̃

−1
k+1Rk − · · · −Rn−1 (3.25)

is an upper triangular matrix. For s = 1,2, . . . , n− 1, the first s rows and columns of Rs are zero,
and hence it is true that L̃−1n−1 · · · L̃

−1
s+1Rs = L̃−1n−1 · · · L̃

−1
s+1L̃

−1
s · · · L̃−11 Rs. Taking also into account

that Â0 = Ã0 −R0, then (3.25) can be simplified as

Ũ = L̃−1n−1 · · · L̃
−1
1 (A− (R0 + · · ·+Rn−1)) = L̃−1(A−R). (3.26)

Multiplying both parts of the equivalence by L̃ and solving for A, we have

A = L̃Ũ +R, (3.27)

where L̃ = L̃1 · · · L̃n−1 is a lower triangular unit matrix, Ũ = Ân−1 is an upper triangular matrix,
and R =

∑n−1
k=0 Rk is the residual matrix. If we denote the elements of the residual matrix as

R = (rij), then rij = 0 if (i,j) ∈ P, and rij =
∑min(i,j)−1

k=0 ã
(k)
ij if (i,j) /∈ P. The expression (3.27)

is independent of the strategy employed to reject elements, because this rule only influences the
characterization of the residual matrix R. Thus, we can remark that (3.27) is the general expression
of the ILU factorization.

ILUP Factorization

The ILU factorization which rejects the elements that do not belong to a preestablished pattern
of positions is called ILUP factorization. In Algorithm 3.3 we show the right-looking algorithmic
variant of this factorization. The first line of the algorithm initializes Â0 with the elements of A
that belong to P. Each iteration of the external loop obtains the strictly lower triangular part of
the k-th column of L̃ (line 3) and the upper part of the k-th row of Ũ (line 4). The two internal
loops calculate Âk accordingly to (3.24). The loop in line 5 only iterates through the elements of
the strictly lower triangular part of the k-th column that belong to P; similarly, the loop in line 6
only goes through those of the upper triangular part of the k-th row that belong to P. Therefore,

53

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

both loops do not process those combinations of i and j for which it is guaranteed that likukj = 0,

avoiding the calculation of unnecessary operations to obtain L̃−1k Âk−1. Moreover, the algorithm
saves additional operations because it avoids the updates corresponding to the (i,j) positions which
do not belong to P (line 7), and it also saves memory, because only the elements belonging to P
are stored.

Algorithm 3.3 Right-looking (or KIJ) algorithmic variant of the ILUP factorization

1: â
(0)
ij ← aij with (i,j) ∈ P

2: for k = 1 : n− 1 do
3: l̃ik ← â

(k−1)
ik /â

(k−1)
kk with i = k + 1 : n, (i,k) ∈ P

4: ũkj ← â
(k−1)
kj with j = k : n, (k,j) ∈ P

5: for i = k + 1 : n, (i,k) ∈ P do
6: for j = k + 1 : n, (k,j) ∈ P do

7: â
(k)
ij ← â

(k−1)
ij − l̃ikũkj if (i,j) ∈ P

8: end for
9: end for

10: end for

The right-looking variant of the ILU factorization is of theoretical interest because it can be
derived immediately from the Gaussian elimination process. However, from the practical point of
view, the efficient implementation of the update corresponding to the two internal loops is complex,
because the storage format of the sparse matrices is usually Compressed Sparse Row (CSR) or Com-
pressed Sparse Column (CSC). In the ILUP factorization, the downside is less serious, because the
non-zero pattern of the factors is known beforehand and, therefore, if the data structures employed
in the storage are created in a previous step, it is not necessary to dynamically accommodate new
elements during the process. However, when the structure of the triangular factors is not known
a priori, the usual solution to this problem requires a change to the data structures and/or the
algorithmic variant of the ILU factorization. To accommodate the CSR (or CSC) storage format,
an algorithmic variant of the factorization different to the right-looking is often used. Specifically, in
practice we use delayed-update LU algorithmic variants, as for example, the row-lazy (IKJ) [93], the
column-lazy [93], or the row-column lazy [93] (the Crout variant), on which all the updates of one
iteration of the external loop are respectively applied over a row, column, or row and column. Thus,
once they have been computed, it is possible to easily incorporate them into the data structures
employed for the factors.

In Algorithm 3.4 we illustrate the IKJ algorithmic variant of the ILUP factorization. The i-th
iteration of the external loop obtains the elements of the i-th row located in the strictly lower
triangular part of L̃ (line 5) and those of the i-th row located in the upper triangular part of
Ũ (line 10). For this reason, CSR is the most convinient storage format for the data structures

corresponding to L̃ and Ũ . For each value of k, the loop of line 4 removes a new element â
(k−1)
ik

of the i-th row of Âk−1 if (i,k) /∈ P. In order to do this, the loop of line 6 subtracts to the i-th
row of Âk−1 the result of multiplying the elements of the k-th row located in the upper triangular
part Âk−1 (i.e. the upper triangular part of Ũ) by l̃ik. As a result of this removal, we obtain the
i-th row of Âk. At the end of the loop of line 4, the i-th row of Âi−1, i.e. of Ũ , is obtained. The
efficient implementations of the IKJ algorithmic variant of the ILUP factorization do not explicitly
generate the Âk matrices, with k = 0,1, . . . ,n−1. Instead, the updates corresponding to the k loop
are carried out in a vector w, which also stores the elements of the i-th row of L̃ in the positions

54

3.2. PRECONDITIONED CG

corresponding to the already dropped elements. In Algorithm 3.5, we present the IKJ variant when
the w vector is employed.

Algorithm 3.4 Row-lazy (or IKJ) algorithmic variant of the ILUP factorization

1: â
(0)
ij ← aij with (i,j) ∈ P

2: ũ1j ← â
(0)
1j with j = 1 : n, (1,j) ∈ P

3: for i = 2 : n do
4: for k = 1 : i− 1, (i,k) ∈ P do

5: l̃ik ← â
(k−1)
ik /â

(k−1)
kk

6: for j = k + 1 : n, (k,j) ∈ P do

7: â
(k)
ij ← â

(k−1)
ij − l̃ikũkj if (i,j) ∈ P

8: end for
9: end for

10: ũij ← â
(i−1)
ij with j = i : n, (i,j) ∈ P

11: end for

The IKJ variant and the right-looking variant of the ILUP factorization produce equivalent
incomplete factors for the same P, if this pattern is preestablished and does not suffer changes
during the factorization [166]. On the contrary, if P is dynamically generated during the elimination
process, then we do not have any guarantee that both variants will produce the same result.

Algorithm 3.5 Row-lazy (or IKJ) algorithmic variant of the ILUP factorization

1: for i = 1 : n do
2: wj ← aij with j = 1 : n, (i,j) ∈ P
3: for k = 1 : i− 1, (i,k) ∈ P do
4: wk ← wk/ũkk
5: for j = k + 1 : n, (k,j) ∈ P do
6: wj ← wj − wkũkj if (i,j) ∈ P
7: end for
8: end for
9: l̃ij ← wj and wj ← 0 with j = 1 : i− 1, (i,j) ∈ P

10: ũij ← wj and wj ← 0 with j = i : n, (i,j) ∈ P
11: end for

ILU(0) Factorization and its generalization to ILU(l)

The ILU factorization with no fill-in, denoted by ILU(0), takes P to be precisely the pattern
of A. In this case, the non-zero element patterns of L̃ and Ũ coincide with the non-zero element
pattern of the lower and upper triangular parts of A, respectively. Thus, (L̃ ∪ Ũ) − A = ∅. The
same concept can be applied for the Cholesky factorization A = LLT in the case of SPD matrices,
obtaining in this case an Incomplete Cholesky (IC) factorization with no fill-in, or IC(0).

The factorizations with no fill-in are easy to implement, their cost is relatively small, and they
are also quite efficient as preconditioners on significant problems, like in systems which arise from
the numeric resolution of elliptic PDEs using the finite difference method [166]. However, for more
complex problems, the ILU factorizations with no fill-in usually obtain inaccurate approximations

55

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

of A, i.e. with ‖R‖ “large” in (3.27), because they discard many elements of large size in the
factorization process.

In order to increase the precision of the approximate factorization, we can include positions
in P which are not present in the non-zero element pattern of A. In the family of level of fill-in
preconditioners or ILU(l), these positions are selected in the set L∪ U , i.e., in the set of positions
in which the non-zero elements of L + U are located. Therefore P = L̃ ∪ Ũ ⊆ L ∪ U . The l
parameter is a preestablished integer number which determines the positions of the set L ∪ U that
will form the pattern P. This pattern is formulated in a prior step to the numeric factorization,
known as symbolic ILU(l) factorization, which is gathered in Algorithm 3.6. In this process we only
take into account the positions of the elements involved in the elimination, but not their numeric
values. The algorithm assigns an integer number p̃ij , named level of fill-in, to each “accepted”
position (i,j), i.e., to each position selected as member of P. In the i-th iteration, all the (i,j)
positions of the i-th row which belong to the non-zero element pattern of A are accepted, and the
algorithm assigns them a level of fill-in p̃ij = 0 (line 3). Afterwards, the loop in line 4 proceeds
with the elimination of the (i,k) positions, with k < i, which belong to P in ascending order1.
When a specific (i,h) position is eliminated, any of the (h,j) positions crossed by the loop in line 5
may cause fill-in in the (i,j) position. In these cases, the level of fill-in w corresponding to the (i,j)
position is obtained as the addition of the level of fill-in of the originating entries plus 1 (line 6).
If the value of w is equal or lower than the prefixed constant l, then the (i,j) position is accepted
in line 11. The fill-in of an (i,j) position may be caused by some pairs of entries (i,k), (k,j) ∈ P,
with 1 ≤ k < min(i,j). Therefore, the algorithm assigns the smallest level of fill-in possible to the
positions of P (line 9). We have to take into account that if l = 0, then the algorithm obtains
P = A, i.e., the pattern corresponding to the ILU(0) preconditioner; whereas if l = ∞, then
P = L ∪ U , i.e., that corresponding to the LU factorization of A. In Figure 3.3 we show the P
pattern calculated by the ILU(l) symbolic factorization for an example of a sparse matrix and four
different values of l.

An alternative way to interpret the above definition of fill-in level can be drawn from the graph
model of Gaussian elimination, which is a standard tool used in sparse direct solvers. Algorithm 3.6
is supported by the incomplete fill-path theorem and its relation with the fill-path theorem. Consider
the adjacency graph G(A) = (V,E) of the matrix A. These results typify the presence of an (i,j)
position in P and in L ∪ U , respectively, according to the fill-paths of the adjacency graph G(A).
A fill-path in G(A) is a path between two vertices i and j, such that all the vertices in the path,
except the end points i and j, are numbered less than i and j. The fill-path theorem establishes
that there is a fill-in entry (i,j) ∈ L∪U at the completion of the Gaussian elimination process if and
only if there exists a fill-path between i and j in G(A). The incomplete fill-path theorem establishes
that the position (i,j) belongs to P with fill-in level p̃ij = k if and only if there exists a fill-path
of length k + 1 between i and j. Therefore, P ⊆ (L ∪ U). Furthermore, the set (L ∪ U) − P is
composed by the (i,j) positions for which all the fill-paths from i to j have a length longer than
l + 1. Hence, if we measure the distance between two vertex in G(A) in terms of fill-path length,
the ILU(l) preconditioner accepts those (i,j) positions for which the i, j vertex are ”nearby” in
G(A).

In most cases, the efficiency of the ILU(l) factorization as preconditioner, in terms of its capacity
to accelerate the convergence of the iterative method, significantly improves by considering addi-

1In Algorithms 3.4 and 3.5 it was also necessary to eliminate the elements in ascending order. However, satisfying
this requirement in Algorithm 3.6 can significantly increase the cost because the pattern P can be different for two
different iterations of the loop in line 4 and, therefore, it is necessary to maintain the order in the data structure used
for P. In general, it is necessary to maintain this order for all the factorization algorithms based on the IKJ variant
which dynamically generates the structure of each row of the factors.

56

3.2. PRECONDITIONED CG

Algorithm 3.6 ILU(l) symbolic factorization

1: P ← ∅
2: for i = 1 : n do
3: insert (P, (i,j)) and p̃ij ← 0 with (i,j) ∈ A
4: for k = 1 : i− 1 in ascending order, (i,k) ∈ P do
5: for j = k + 1 : n, (k,j) ∈ P do
6: w ← p̃ik + p̃kj + 1
7: if w ≤ l then
8: if (i,j) ∈ P then
9: p̃ij ← min(p̃ij , w)

10: else
11: insert (P, (i,j))
12: p̃ij ← w
13: end if
14: end if
15: end for
16: end for
17: end for

Figure 3.3: P pattern computed by the ILU(l) symbolic factorization for an example of a sparse
matrix and four different values of l. From left to right and from top to bottom:
l = 0,1,2 and ∞. The non-zero element pattern ofA is equal to the ILU(0) factorization
pattern.

57

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

tional fill-in levels, i.e., greater values of l. However, when l ≥ 1 it is possible that P may get closer
to L ∪ U , even with relatively small values of l. Even though in Figure 3.3 we do not observe this
behaviour for l ≤ 2, a considerable number of examples of the Harwell-Boeing collection of sparse
matrices have a “maximum” number of fill-in levels that is relatively small. (The maximum level
of fill-in is the smallest level of fill-in l which accomplishes that the ILU(l) factorization coincides
with the LU). When in those cases we need to use values of l ≥ 1 to obtain efficient preconditioners,
the solver composed by the ILU(l) preconditioner plus an iterative method is no longer efficient
compared with direct methods. Another problem is that, except in concrete cases, it is not possible
to predict the computational and storage costs required by the ILU(l) factorizations. However,
the main disadvantage of level of fill-in preconditioners is that, for many matrices, the level of
fill-in may not be a good indicator of the magnitude of the rejected elements. Thus, the algorithm
can reject many elements of great magnitude, obtaining an imprecise ILU factorization, i.e., with
“large” ‖R‖. Although it does not exist a direct relation between ‖R‖ and the efficiency of the
precondictioner, the experience reveals that, usually, this factor causes an increase of the number
of iterations required by the iterative method to solve the system.

Modified ILU (MILU) Factorization

In all the techniques presented thus far, the elements that were dropped during the incomplete
elimination process are simply discarded. There are also techniques which attempt to reduce the
effect of dropping by compensating for the discarded entries. For example, a popular strategy is to
add up all the elements that have been dropped at the completion of the k-loop of Algorithm 3.4,
and then accumulate this sum on the diagonal entry in U . This diagonal compensation strategy
gives rise to the Modified ILU (MILU) factorization.

This strategy guarantees that the row sums of A are equal to those of LU . For PDEs, the
vector of all ones represents the discretization of a constant function, and this additional constraint
forces the ILU factorization to be exact for constant functions in some sense. Therefore, it is not
surprising that the algorithm often does well for such problems. For other problems, or problems
with discontinuous coefficients, MILU algorithms are usually not better than their ILU counterparts.

This generic idea of lumping together all the elements dropped in the elimination process and
adding them to the diagonal of U can be used for any form of ILU factorization. In addition, there
are variants of diagonal compensation in which only a fraction of the dropped elements are added
to the diagonal.

Dropping elements according to their magnitude: ILUT(τ, p) Factorization

Incomplete factorizations which rely on the levels of fill-in are blind to numerical values because
elements are dropped depending only on the structure of A. This can cause some difficulties for real
problems that arise in many applications. A few alternative methods are available which are based
on dropping elements in the Gaussian elimination process according to their magnitude rather than
their locations. With these techniques, the non-zero pattern P is determined dynamically. The
simplest way to obtain an incomplete factorization of this type is to take a sparse direct solver
and modify it by adding lines of code which will ignore “small” elements. However, most direct
solvers have a complex implementation involving several layers of data structures that may turn
this approach ineffective. It is desirable to develop a strategy which is more akin to the ILU(l)
approach.

A generic ILU algorithm with threshold can be derived from the IKJ version of Gaussian
elimination by including a set of rules for dropping small elements. In the following, applying a

58

3.2. PRECONDITIONED CG

dropping rule to an element only means replacing the element by zero if it satisfies a set of criteria.
A dropping rule can be enforced to a whole row by applying the same rule to all the elements of
the row.

Algorithm 3.7 ILU(τ,p) Factorization

1: for i = 1 : n do
2: τi ← τ‖eTi A‖
3: wj ← aij with j = 1 : n, aij 6= 0
4: for k = 1 : i− 1 , wk 6= 0 do
5: wk ← wk/ũkk
6: if |wk| ≤ τi then
7: wk ← 0
8: else
9: for j = k : n, ũkj 6= 0 do

10: wj ← wj − wkũkj
11: end for
12: end if
13: end for
14: wj ← 0 with j = i : n, |wj | ≤ τi
15: Cut on the bias the strict lower triangular part of w to p elements
16: Cut on the bias the strict upper triangular part of w to p elements
17: l̃ij ← wj with j = 1 : i− 1, wj 6= 0
18: ũij ← wj with j = i : n,wj 6= 0
19: w ← 0
20: end for

The ILU(τ, p), based on the IKJ variant of the ILU factorization, is shown in Algorithm 3.7.
The τ parameter is a positive real number, called discard tolerance, which controls the magnitude
of the elements accepted in L̃ and in Ũ ; and the p parameter is a positive integer which controls
the maximum number of elements accepted in each row of L̃ and Ũ . The loop in line 4 only rejects

the elements wk (â
(k−1)
ik) of the i-th row located in the strictly lower triangular part which are

non-zero. An element wk 6= 0 is rejected (line 7) if the magnitude of wk/ũkk is less than or to
the threshold τi, saving thus the updates concerning its elimination. In the opposite case, wk is
eliminated according to Algorithms 3.4–3.5, although only the elements wj for which ũkj 6= 0 are
updated, and the fill-in caused by the updates in line 10 is accepted temporarily. After finalizing the
loop in line 4, the elements of the upper triangular part of w of magnitude less than τi are rejected
in line 14. Afterwards, in line 15 (and 16) the elements of magnitude less than the p elements of
large magnitude of w in the strict lower (and upper) triangular parts are rejected. In this way,
|L̃ ∪ Ũ| ≤ 2np. Finally, in line 17 (18) the i-th row is added to the data structure which stores
L̃(Ũ).

Algorithm 3.7 employs a discard tolerance relative to the magnitude of the i-th row of A to
reject the elements corresponding to the i-th row of L̃ (line 7) and Ũ (line 14). This relative
tolerance, τi, is obtained in line 2 as the product of the absolute discard tolerance, τ , and the norm
of the i-th row of A, ‖eTi A‖. The discarding criteria based on relative tolerance are, in general,
more reliable than the criteria based exclusively on the absolute tolerance, and they usually yield a
good solution. A common disadvantage for these criteria is the selection of a satisfactory value for
τ . For this selection, it is common to start from a representative subset of the linear systems to be
solved in the context of a specific application and, through experimentation, we can determine a

59

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

good value for the systems which arise from the same application. In most cases, selecting values of
τ in the interval [10−4,10−2] yield good results, though the optimum value depends on the concrete
problem [165].

In the ILUT factorization process, the elements of wk which are rejected in line 7 are not re-
moved, saving in this way the updates of the loop in line 9. Note the difference between removing
and rejecting: in order to remove an element wk, it is necessary to complete the updates correspond-
ing to the loop in line 9, and afterwards, wk stores the value wk/ũkk, i.e., the entry corresponding
to L̃. However, when an element wk is rejected, this element is “artificially” substituted by the
zero value. A possible modification of Algorithm 3.7 may remove all the non-zero elements of the
strictly lower triangular part, and then reject the elements of L̃ which have a magnitude lower than
τi in line 14, and analogously to Ũ . Unfortunately, it is possible to demonstrate that this modifica-
tion of the ILUT factorization not only increments the computational cost, but also decreases the
accuracy of the approximation [61]. Thence, there exists a mathematical justification to maintain
the rejected elements. So, from the mathematical point of view, cutting on the bias the rows of L̃ is
not considered a good practice, even though it supposes not having a priori a threshold for |L̃ ∪ Ũ|.
Again, the best combination for the p and τ values depends on the specific problem, though we can
usually obtain good results by adjusting only the value of τ and fixing p to a “large” value. For
example, the default value for p in ILUPACK is n+ 1 [52].

In the efficient implementations of Algorithm 3.7, w is a data structure such as, for example,
a heap or a binary search tree, which maintains the order between the identifiers of the column
of the non-zero elements when the fill-in is produced in w. Operations of the form “wk ← 0” are
implemented removing the wk element of the data structure; those of the form “wj ← wj−wkũkj”,
updating or inserting a new element if the operation produces fill-in; whereas queries of the form
“wk 6= 0” are implicitly done by extracting the following element of w. When the fill-in admitted by
the factorization is relatively small, the cost required to maintain this structure does not suppose
a significant part of the global cost of the process. However, when more fill-in is progressively
admitted (reducing the value of τ and/or increasing that of p), this cost may dictate the total time
of the factorization [166].

The Crout ILU Approach: ILUC Factorization

A notable disadvantage of the standard delayed-update IKJ factorization is that it requires
access to the entries in the k-th row of L̃ in sorted order of columns. This is further complicated by
the fact that the working row (denoted by w) is dynamically modified by fill-in as the elimination
proceeds. Searching for the leftmost entry in the k-th row of L̃ is usually not a problem when
the fill-in allowed is small. Otherwise, when an accurate factorization is sought, it can become a
significant burden and may ultimately even dominate the cost of the factorization. Sparse direct
solution methods that are based on the IKJ form of Gaussian elimination obviate this difficulty
by a technique known as the Gilbert-Peierls method [87], but because of dropping, this technique
cannot be directly used on ILU factorizations. An alternative is to reduce the cost of the searches
through the use of clever data structures and algorithms, such as binary search trees or heaps [62].
The Crout formulation provides the most elegant solution to the problem. Moreover, the Crout
version of Gaussian elimination has additional advantages which make it one of the most appealing
ways of implementing incomplete LU factorizations.

Particularly, the Crout approach [166] is a delayed update of the factorization, and it does not
require any order in the elimination of the non-zero elements of the i-th row, i.e., the elements

â
(k−1)
ik 6= 0 for k = 1, . . . , i − 1. In the k iteration of the external loop of this variant, the updates

corresponding to the elimination of the k-th column are delayed, i.e., are applied in subsequent

60

3.2. PRECONDITIONED CG

Figure 3.4: Computational pattern of the Crout algorithm.

iterations. Besides, at the beginning of the k-th iteration, the updates corresponding to the elim-
ination of the k − 1 first rows have not been applied yet to the block formed by the intersection
of the last n − k + 1 rows and columns. So, the k-th iteration of the Crout approach applies the
delayed updates to the k − 1 previous iterations in the first row and column of this block, i.e., to
the elements of the k-th column located in the strict lower triangular part of A, and the elements
in the k-th row located in the upper triangular part of A. In Figure 3.4 the parts of the factors
being computed at the k-th step are shown in black and those being accessed are in the gray areas.
Furthermore, in the top part of Figure 3.5 we show the elements involved in the updates of the
k-th iteration of the Crout factorization and, in the bottom part, the pseudo-codes in charge of
their execution. On the left part of Figure 3.5 we can recognize the update of the k-th column,
and on the right part, the update of the k-th row. The rows and columns coloured in gray contain
elements of L̃ and Ũ accessed in read mode; the row and column in black contain the elements
which are updated in the k-th iteration; r and s are work vectors, and

l̃∗i = (l̃k+1,i · · · l̃n,i)T , ũi∗ = (ũi,k · · · ũi,n) , i = 1, . . . , k − 1. (3.28)

In the pseudo-codes of Figure 3.5, the updates of r and s can be applied in any order, which
represents a significant advantage with respect to the IKJ variant from the point of view of the
factorization cost and its implementation. Actually, in the efficient implementation of the Crout
ILU factorization, r and s are, substantially, two dense work vectors [124]. The sparse structure of
the problem is exploited saving updates if ũik = 0 or l̃ji = 0 for the pseudo-code on the left part
of Figure 3.5, or if l̃ki = 0 or ũij = 0, for that on the right part. Moreover, the operations made
by the pseudo-code in the left part of the Figure are independent from those of the pseudo-code
in the right part and, therefore, both codes can be executed in parallel. Although this kind of
parallelism can be exploited to reduce the cost of the factorization in multithread processors, the
scalable parallel algorithms to compute ILU factorizations exploit parallelism in which the degree
of concurrency is significantly higher.

The pseudo-codes in Figure 3.5 are completed applying discard rules to the work vectors r and s,
scaling the elements of r by (ukk)

−1, putting the non-zero elements of r on the k-th column of L̃ and
the non-zero elements of s on the k-th row of ũ, and iterating for k = 1, 2, . . . , n. The Incomplete
LU Crout (ILUC) factorization is shown in Algorithm 3.8. The more appropriate storage formats
for L̃ and Ũ are, respectively, CSC and CSR, since we store L̃ by columns and Ũ by rows.

61

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

 Not updated

r ← 0
ri ← aik with i = k + 1 : n, aik 6= 0
for i = 1 : k − 1, ũik 6= 0 do

for j = k + 1 : n, l̃ji 6= 0 do
rj ← rj − l̃jiũik

end for
end for

 Not updated

s← 0
sj ← akj with j = k : n, akj 6= 0
for i = 1 : k − 1, l̃ki 6= 0 do

for j = k : n, ũij 6= 0 do
sj ← sj − l̃kiũij

end for
end for

Figure 3.5: Updates carried out in the k-th column (left) and row (right) of A during the k-th
iteration of the Crout variant of the ILU factorization.

Algorithm 3.8 ILUC Factorization

1: for k = 1 : n do
2: r ← 0
3: ri ← aik with i = k + 1 : n, aik 6= 0
4: for i = 1 : k − 1, ũik 6= 0 do
5: for j = k + 1 : n, l̃ji 6= 0 do
6: rj ← rj − ũik l̃ji
7: end for
8: end for
9: s← 0

10: sj ← akj with j = k : n, akj 6= 0
11: for i = 1 : k − 1, l̃ki 6= 0 do
12: for j = k : n, ũij 6= 0 do
13: sj ← sj − l̃kiũij
14: end for
15: end for
16: Apply discard to r
17: Apply discard to s
18: ũkj ← sj with j = k : n, sj 6= 0
19: l̃jk ← rj/ũkk with j = k + 1 : n, rj 6= 0
20: end for

62

3.2. PRECONDITIONED CG

From the point of view of an efficient implementation of Algorithm 3.8, two potential sources
of difficulty will require a careful and somewhat complex implementation. First, looking at lines
6 and 13, only the section (k + 1 : n) of the i-th column of L̃ is required, and similarly, only the
section (k : n) of the i-th row of Ũ is needed. Second, line 4 has to access to the k-th column of Ũ ,
which is stored by rows, while line 11 accesses the k-th row of L̃, stored by columns.

The first issue can be easily handled by keeping pointers that indicate where the relevant part
of each row of Ũ (respectively column of L̃) starts. An array Ufirst of size n can be used to store,
for each row i of Ũ the index of the first column that will be used next. If k is the current step
number, this means that Ufirst(i) would hold the first column index ≥ k of all non-zero entries
in the i-th row of Ũ ; in the case of L̃ we would use an analogous vector, Lfirst. These pointers
are easily updated after each elimination step, assuming that column indices (respectively column
indices for L̃) are in increasing order.

For the second issue, consider the situation for the Ũ factor, in which the problem is that the k-
th column of Ũ is required for the update of L̃, but Ũ is stored row-wise. An elegant solution to this
problem is known since the pioneering days of sparse direct methods [76, 86], but before discussing
this idea, consider the simpler solution of including a linked list for each column of Ũ . These linked
lists, implemented using a work vector Ulist, would be easy to update because the rows of Ũ are
computed one at a time. Each time a new row is computed, the non-zero entries of this row are
queued to the linked lists of their corresponding columns. However, this scheme would entail non-
negligible additional storage. A clever alternative would be to exploit the array Ufirst mentioned
above to form incomplete linked lists of each column [124]. With this implementation, Ulist(k)
stores the row identifier of the first non-zero element of the column k of Ũ , Ulist(Ulist(k))
contains the row identifier of the second, and so on, until the last element of the list. If the last
element of the list belongs to the row j, then Ulist(j) has the value 0. The interesting point
is that, though the columns structures constructed in this manner are incomplete, they become
complete as soon as they are needed. A similar technique is used for the rows of the L̃ factor.

The solution described in the previous paragraph was used in the first packages of direct meth-
ods, although it felt into disuse when the problem dimensions increased. Current software packages
of direct methods employ techniques to efficiently manage the sparse structure of the problem [63].
However, in [124] was showed that the use of linked lists for the ILUC factorization is an efficient
solution because the accepted fill-in to obtain an effective preconditioner is, in general, significantly
lower. In fact, linked lists are currently employed in leading preconditioned software packages, such
as ILUPACK.

In addition, to avoiding searches, the Crout version of ILU has another important advantage.
The straightforward dropping rules used in ILUT can be easily adapted for ILUC, and it also
enables some new dropping strategies which may be viewed as more rigorous than the standard ones
presented so far. Thus, the data structure of ILUC allows options which are based on estimating
the norms of the inverses of L̃ and Ũ . Moreover, it is important to emphasize that the ILUT and
ILUC factorizations do not generally obtain the same approximation of A, even if they employ the
same parameters to the discard rules. Accordingly, in the ILU factorizations with discard that are
based on the magnitude of elements, the algorithmic variant is also important in the quality of the
approximation.

ILDU and AINV Factorizations

In this section we present two factorizations within the preconditioning techniques based on the
approximate factorizations of A and A−1. Firstly, we consider the LDU factorization of A and the

63

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

corresponding Incomplete LDU (ILDU) factorization, and later the foundations of the AINV are
introduced.

The factorization process of A decomposes the coefficient matrix of the system into the product
A = LDU , where L ∈ Rn×n is unit lower triangular, D ∈ Rn×n is diagonal, and U ∈ Rn×n is unit
upper triangular. When A is symmetric, we use the expression “LDLT factorization”, as U = LT .
Moreover, if it is positive definite, all the elements of the main diagonal of D are positive. Consider
the A = L̂Û factorization, with diag(Û) = (û11û22 · · · ûnn), then L = L̂,DU = Û and, therefore,

D =

û11 0 0 · · · 0
0 û22 0 · · · 0

0 0
. . .

. . .
...

...
...

. . .
. . .

...
0 0 · · · 0 ûnn

 (3.29)

If we exploit the relation between L, D and U factors and L̂ and Û , the derivation of the KIJ
algorithmic variant of this factorization is immediate from Algorithm 3.2. Similar changes must be
applied to derive the Crout and the IKJ approaches of the ILDU factorization. It is easy to check
that, if we partition the coefficient matrix as

A =

(
β dT

c E

)
, (3.30)

with β ∈ R, and c, dT and E of size according to β, then

A =

(
β dT

c E

)
=

(
1 0
p I

)(
δ 0
0 S

)(
1 qT

0 I

)
, (3.31)

with δ = d11, p = (l21 · · · ln1)T , qT = (u12 · · ·u1n) and S = (a
(1)
ij)i,j=2···n formed from the elements

obtained after the execution of the first iteration of the KIJ variant of the LDU factorization.
Matrix E − pδqT is called Schur complement of β in A and corresponds to the matrix resulting
of the application on A of the updates corresponding to the elimination of c. Equation (3.31) is
called partial LDU factorization, because the n−1 remaining columns have not been removed. This
factorization is completed recursively by applying (3.30) and (3.31) to S.

The partial factorization (3.31) is converted into an incomplete partial ILDU factorization if we
reject elements of p and qT , usually those of lower magnitude than a threshold τ . If we denote the
result of rejecting some elements of p and qT , respectively, as p̃ and q̃T then the approximate Schur
complement is defined as

S̃ = E − p̃δq̃T ≈ S. (3.32)

The partial ILDU factorization is completed by applying recursively the same process to S̃.

The AINV factorizations [41, 42] directly obtain the incomplete factors of A−1. When we do
not discard elements during the process, these factorizations compute two unit upper triangular
matrices, W ∈ Rn×n and Z ∈ Rn×n, and a diagonal matrix, D ∈ Rn×n, so that W TAZ = D; i.e.,
A−1 = ZD−1W T . If A admits an LDU factorization, then W = L−T and Z = U−1. Therefore,

W TA = DU and ZTAT = DLT . (3.33)

The corresponding algorithm appears in [166].

64

3.2. PRECONDITIONED CG

Inverse-based dropping rules: ILDU INV factorization

The main objective of Inverse-based dropping rules is to obtain ILU preconditioners less sensitive
to the errors produced during the dropping of the elements of the factors. In [45, 46] these rules
were evaluated in combination with pivoting techniques, whereas in [124] they were efficiently
implemented taking advantage of the ILUC factorization, but without pivoting. In this section, for
simplicity, we only explain the dropping rules, and omit the use of pivoting.

The inverse-based dropping rules are derived from the relation between the ILU and AINV
factorizations. In [50] it was demonstrated that it is possible to calculate two incomplete factors
L̃ and Ũ such that L−T ≈ W̃ and Ũ−1 ≈ Z̃, with W̃ and Z̃ the factors computed by the AINV
factorization, [50, 131]. Concretely, the proximity of these factors suggests that, in the dropping
rules, ‖eTk L̃−1‖ and ‖Ũ−1ek‖ can replace ‖W̃ek‖ and ‖Z̃ek‖, respectively. After applying this
substitution, and taking the infinite norms ‖eTk L̃−1‖ and ‖Ũ−1ek‖, the inverse-based rules drop an
element l̃ik, with i > k when

|l̃ik|· ‖eTk L̃−1‖∞ ≤ τ ; (3.34)

and an element ũki when

|ũki|· ‖Ũ−1ek‖∞ ≤ τ . (3.35)

To reject those elements l̃ik(ũki) which satisfy (3.34) ((3.35)) in the k-th iteration of the ILDU
factorization, we need estimations of the infinite norm of the k-th row (column) of L̃−1(Ũ−1), i.e.,
estimations of ‖eTk L̃−1‖∞ (‖Ũ−1ek‖∞).

Assume that L ∈ Rn×n is a sparse matrix with unit lower triangular structure, and consider
that we want to obtain estimations of ‖eTkL−1‖∞, for k = 1, . . . , n. Taking into account that the
infinite matrix norm [88] of eTkL

−1 ∈ R1,n is defined as

‖eTkL−1‖∞ = max
‖b‖∞=1

‖eTkL−1b‖∞ = max
‖b‖∞=1

|eTkL−1b|, (3.36)

then, for each vector b̂ with ‖b̂‖∞ = 1, ‖eTkL−1‖∞ ≥ |eTkL−1b̂|. If we get a vector b̂ for which the

magnitude of |eTkL−1b̂| is near its upper bound ‖eTkL−1‖∞, with k = 1, . . . , n then the solution com-

ponents of the system Lx = b̂ can be employed as estimators of ‖eTkL−1‖∞; i.e., |xk| ≈ ‖eTkL−1‖∞,
for k = 1, · · · , n.

In Algorithm 3.9 we illustrate the steps to compute estimators tLk ≈ ‖eTkL−1‖∞ for k = 1, · · · , n.
In fact, the factorization in ILUPACK [52] includes by default this calculation combined with
the ILUC factorization. However, we should emphasize that the method employed in ILUPACK
computes, in each iteration k of Algorithm 3.9, a second round in which it attempts to improve
the quality of the estimator [46]. Furthermore, the ILU factorization in ILUPACK incorporates
pivoting to control the magnitude of ‖eTk L̃−1‖∞ and ‖Ũ−1ek‖∞ during the factorization process
with the objective of improving the quality of the preconditioner [46, 51].

Multigrid methods

The convergence of preconditioned Krylov subspace methods for solving linear systems arising
from discretized PDEs tends to slow down considerably as these systems become larger. This
degradation in the convergence rate, compounded with the increased operation count per step due to
the problem size, results in a severe loss of efficiency. In contrast, the class of methods in this section,
Multigrid methods, are capable of achieving convergence rates which are, in theory, independent
of the mesh size. One significant difference with the preconditioned Krylov subspace approach is
that Multigrid methods were initially designed specifically for the solution of discretized elliptic

65

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

Algorithm 3.9 Estimator of ‖eTkL−1∞ ‖, with k = 1 : n, used in ILUPACK.

1: v(0) = (v
(0)
1 , · · · , v(0)n)T = (0, · · · , 0)T

2: for k = 1 : n do
3: x+ ← 1− v(k−1)k

4: x− ← −1− v(k−1)k

5: P ← {m : k + 1 ≤ m ≤ n, lmk 6= 0}
6: v+ ← ‖(v(k−1)j + ljkx

+)j∈P‖1
7: v− ← ‖(v(k−1)j + ljkx

−)j∈P‖1
8: if v+ > v− then
9: xk ← x+

10: else
11: xk ← x−

12: end if
13: v

(k)
j = v

(k−1)
j with j = k + 1 : n, ljk = 0

14: for j ∈ P do

15: v
(k)
j ← v

(k−1)
j + ljkxk

16: end for
17: tLk ← max (|x+|, |x−|)
18: end for

PDEs. The methods were later extended (AMG) in different ways to handle other PDE problems,
including nonlinear ones, as well as problems not modelled by PDEs. Because these methods exploit
more information on the problem than standard preconditioned Krylov subspace methods, their
performance can be vastly superior. On the other hand, they may require implementations at hand
that are specific to the physical problem, in contrast with preconditioned Krylov subspace methods
which attempt to be “general-purpose”.

The Multigrid paradigm was incorporated to the Krylov methods to obtain competitive solvers
for large dimension systems. In particular, a new family of preconditioners derived from multigrid
variants of the ILU factorization improve the scalability of the solvers based on Krylov subspaces
imitating the AMG methods. The multi-level ILU factorizations incorporate a mechanism to split
the unknown set of the original system into two subsets: often the independent set is called the fine
set and the complementary one is the coarse set. This mechanism is called coarse-grid selection.
For the following discussion, we assume that the fine and the coarse sets have, respectively, k and
n− k unknowns. Then, we can obtain a permuted system

Ax = b→ P TAPP Tx = P T b→ P TAPx̂ = b̂, (3.37)

which can be partitioned as follows

P TAP =

(
B F
E C

)
, x̂ =

(
x̂B
x̂C

)
, b̂ =

(
b̂B
b̂C

)
, (3.38)

where P ∈ Rn×n is the permutation matrix, B ∈ Rk×k contains the coefficients corresponding to
the unknowns of the fine set, F and E those of the unknowns of the fine-coarse set and coarse-fine
set, respectively, and C ∈ R(n−k)×(n−k) the coefficients of the unknowns of the coarse set. A block
LU factorization will help establish the link with AMG-type methods,

66

3.2. PRECONDITIONED CG

P TAP =

(
B F
E C

)
=

(
I 0

EB−1 I

)(
B 0
0 SC

)(
I B−1

0 I

)
, (3.39)

where S is the Schur complement of C, S = C − EB−1F . We can calculate a LU factorization of
the block B,

B = LBUB. (3.40)

To compute this factorization we can use any of the methods previously described in this section.
Afterwards, the factors LB and UB are used to “invert”B−1, and to obtain the next approximation
of the Schur complement

SC ≈ S̃C = C − (EU−1B)(L−1B F). (3.41)

Taking into account the previous steps, we obtain the following block factorization

P TAP =

(
B F
E C

)
=

(
LB 0

EU−1B I

)(
I 0

0 S̃C

)(
UB L−1B F
0 I

)
. (3.42)

The block factorization (3.42) can be employed as preconditioner of the system (3.38) but, for
that, it is necessary to calculate approximations of B and SC which can economically be “inverted”.
In this sense, we can compute an ILU factorization, instead of a LU factorization, approximating
B as,

B = L̃BŨB +RB. (3.43)

The resultant incomplete block factorization is the following

P TAP =

(
B F
E C

)
=

(
L̃B 0

EŨ−1B I

)(
I 0

0 S̃C

)(
ŨB L̃−1B F
0 I

)
+

(
RB 0
0 0

)
. (3.44)

Moreover, an efficient implementation of the algorithm which computes the factorization (3.44)
approximates the matrices EŨ−1B and L̃−1B F , extending the ILU factorization (3.43) to the blocks
E and F . For this purpose, we can apply an ILUC factorization. As a result of this process, we
obtain the following incomplete block factorization

P TAP =

(
B F
E C

)
=

(
L̃B 0

L̃E I

)(
I 0

0 ŜC

)(
ŨB ŨF
0 I

)
+

(
RB RF
RE 0

)
, (3.45)

with

L̃ =

(
L̃B 0

L̃E I

)
, Ũ =

(
ŨB ŨF
0 I

)
, R =

(
RB RF
RE 0

)
. (3.46)

When some elements of L̃ and Ũ located in positions corresponding to non-diagonal blocks are
rejected, then L̃E = EŨ−1B + RE and ŨF = L̃−1B F + RF , where RE and RF contain “small”
elements rejected during the process. Besides, the Schur complement is defined now as follows

SC ≈ ŜC = C − L̃EŨF −RC , (3.47)

where RC is the additional dropping. From a practical point of view, in order to save memory, an
efficient implementation discards the factors L̃E and ŨF once each level of the preconditioner is
calculated, keeping only two sparse rectangular matrices E and F , frequently much sparser than
L̃E and ŨF . Consequently, in this efficient implementation, the matrices RE and RF containing the
discarded elements of these factors are also eliminated. This approach is adopted in the software
packages for the computation of a multi-level ILU factorization, such as ILUPACK.

67

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

3.3 ILUPACK

ILUPACK [47, 52] is the abbreviation for Incomplete LU factorization PACKage, and it is
a software library for the iterative solution of large sparse linear systems, fully written in FOR-
TRAN 77 and C, and available at http://ilupack.tu-bs.de. The package implements a multi-level
incomplete factorization approach (multi-level ILU) based on a special permutation strategy called
“inverse-based pivoting” combined with Krylov subspace iteration methods. Its main use consists
of application problems such as linear systems arising from PDEs and it supports single and double
precision arithmetic for real and complex numbers. Among the structured matrix classes that are
supported by individual drivers are symmetric and/or Hermitian matrices that may or may not be
positive definite as well as general square matrices. The main drivers can be called from C, C++,
and FORTRAN, but an interface to MATLAB is also available.

ILUPACK is mainly based on incomplete factorization methods (ILUs) applied to the system
matrix in conjunction with Krylov subspace methods. The ILUPACK hallmark is the so-called
inverse-based approach combined with the Crout variant of the ILDU factorization. It was initially
developed to connect the ILUs and their approximate inverse factors [51]. These relations are
important since, in order to solve linear systems, the inverse triangular factors resulting from the
factorization are applied rather than the original incomplete factors themselves. The information
extracted from the inverse factors will in turn help to improve the robustness for the incomplete
factorization process. While this idea has been successfully used to improve robustness, its down-
side was initially that the norm of the inverse factors could become large such that small entries
could hardly be dropped during Gaussian elimination. To overcome this shortcoming, a multi-level
strategy was developed to limit the growth of the inverse factors. This led to the inverse-based
approach, and hence the incomplete factorization process, that was eventually implemented in ILU-
PACK. This solution benefits from the information of bounded inverse factors while being efficient
at the same time [51].

In this section, we first define the computation of the preconditioner in ILUPACK, which is based
on the previous concepts of this chapter, and then, we explain how the computed preconditioner is
applied in this package.

3.3.1 Computation of the preconditioner

Preconditioning in ILUPACK relies on the so-called inverse-based approach, which improves the
robustness of classical ILDU factorizations by bounding the growth of the entries in the inverses of
the triangular factors. To justify this, consider the ILDU factorization

A = L̃D̃Ũ +R , (3.48)

where L̃, ŨT are unit lower triangular matrices, D̃ is diagonal, and R is the error matrix which
collects those entries that were dropped during the factorization. Applying the preconditioner
M = L̃D̃Ũ on the original matrix, we obtain the preconditioned matrix

L̃−1AŨ−1 = D̃ + L̃−1RŨ−1. (3.49)

Although dropping typically results in some “relatively small” error matrix R, both L̃−1 and Ũ−1

may exhibit very large norms, so that the application of the preconditioning can significantly amplify
the size of the entries in R. This may directly impact the convergence rate of the preconditioned
iterative solver.

The inverse-based preconditioning approach relies on approximate factorizations with “bounded”
inverse triangular factors; i.e., factorizations with ‖L−1‖ ≤ κ and ‖U−1‖ ≤ κ, for some prescribed

68

3.3. ILUPACK

small threshold κ > 1. In practical applications, an ILDU factorization of the system at hand
does not typically satisfy this requirement, so that pivoting is necessary to bound the inverse tri-
angular factors during the computation. Pivoting is accommodated in a multi-level framework in
order to construct a hierarchy of partial inverse-based approximations, as sketched in the following
multi-level algorithm:

1. Preprocessing step. Matrix A is scaled by diagonal matrices Dl and Dr and reordered by
permutation matrices Pl and Pr:

A→ DlADr → P Tl DlADrPr = Â.

These operations can be considered as a preprocessing prior to the numerical factorization.
They typically include scaling strategies to equilibrate the system, scaling and permuting
based on maximum weight matchings, and finally, fill-reducing orderings such as nested dis-
section, (approximate) minimum degree, etc.

2. Factorization step. At each step of the Crout variant of the ILU factorization, the method
is interlaced with a pivoting strategy which yields a nonexpensive estimation of the norm of a
new row/column of the inverse factors. If the estimation exceeds the threshold k, the current
pivot is rejected and the corresponding row/column are moved to the bottom/right-end of the
matrix. Otherwise, the pivot is accepted and dropping is applied to the current row/column
before they are incorporated to the factors (see Figure 3.6). Collecting the permutations due
to the inverse-based pivoting on P , we obtain the following partial ILDU factorization of a
permuted matrix:

P T ÂP =

[
L̃B 0

L̃E I

] [
D̃B 0

0 S̃C

] [
ŨB ŨF
0 I

]
+

[
RB RF
RE 0

]
. (3.50)

In practice, for an efficient implementation, as stated previously, we can discard L̃E and ŨF ,
and therefore, the matrices RE and RF are zero. The method applies additional dropping to
the approximate Schur complements S̃C , so that we actually compute

ŜC = S̃C +RC = C − (L̃ED̃BŨF) +RC . (3.51)

3. Restarting step. Steps 1 and 2 are repeatedly applied to A = ŜC until ŜC is void or
“sufficiently dense” to be efficiently factorized by a level 3 BLAS-based direct factorization
kernel.

When the multi-level method is applied over multiple levels, a cascade of factors are usually
obtained, as shown in Figure 3.7. Moreover, the computed multi-level factorization is adapted to
the structure of the underlying system. Hence, in this case, the multi-level preconditioner can be
expressed recursively, at a given level l, as

Ml ≈ D̃−1P̃P ,

[
L̃B 0

L̃F I

] [
D̃B 0
0 Ml+1

] [
ŨB ŨF
0 I

]
P T P̃ T D̃−1, (3.52)

where L̃B, L̃F , D̃B, ŨF and ŨB are blocks of the factors of the multi-level L̃D̃Ũ preconditioner
(with L̃B unit lower triangular, ŨB unit upper triangular and D̃B diagonal); and Ml+1 stands for
the preconditioner computed at level l + 1.

69

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

������
������
������
������

������
������
������
������

����
����
����
����

����
����
����
����

����
����
����

����
����
����

�
�
�
�

�� ����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��������
������
������
������

����
����
����
����

����
����
����
����
����

����
����
����
����
������

��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

������
������
������

������
������
������

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����

���
���
���
���

����
����
����
����

���
���
���

���
���
���

����������������������
��
��
��
��
��

��
��
��
��
��
��

����

��
��
��

��
��
��

factorization
continue

factorization
continue

updated
untouchedfactorized

pivoted

pivots

current factorization step

factorization steps
after several

accept

reject

rejected

pivots

only
rejected

Sc
compute

��
��
��
��

��
��
��
��

����
����
����

����
����
����

��
��
��
��

��
��
��
��

�����
�����
�����
�����

‖eTkL−1‖,‖U−1ek‖ ≤ κ

‖eTkL−1‖,‖U−1ek‖ > κ

Figure 3.6: A step of the Crout variant of the preconditioner computation in ILUPACK.

Figure 3.7: ILUPACK multi-level factorization of five-point matrix arising from Laplace PDE dis-
cretization.

70

3.3. ILUPACK

3.3.2 Application of the preconditioner

Figure 3.2 offers an algorithmic description of the PCG method. The computation of the
preconditioner M , explained in the previous section, is the first step of the solver (O0). The
subsequent iteration involves a sparse matrix-vector product (SpMV) (O1), the application of the
preconditioner (O5), and several vector operations (dot products, axpy-like updates, 2-norm;
in O2–O4 and O6–O9). In the remainder of this section, we focus on the application of the
preconditioner.

For simplicity, let us next remove the subscripts in the corresponding operation (O5) of Fig-
ure 3.2: z := M−1r. Applying the preconditioner in level l (i.e., computing z := M−1l r), then
requires solving the system of linear equations:[

L̃B 0

L̃E I

] [
D̃B 0
0 Ml+1

] [
ŨB ŨF
0 I

]
P T P̃ T D̃−1z = P T P̃ T D̃−1r. (3.53)

Breaking down (3.53), we first recognize two transformations to the residual vector r. First,
r′ := Dr applies the diagonal scaling to this vector; then the ordering step is applied to compute
r̂ := P T P̃ T r′. Once these transformations are completed, the system[

L̃B 0

L̃E I

] [
D̃B 0
0 Ml+1

] [
ŨB ŨF
0 I

]
w = r̂ (3.54)

is solved for w(= P T P̃ T D̃−1z) in three steps. Initially, by[
L̃B 0

L̃E I

]
y = r̂ (3.55)

for y; then solving recursively [
D̃B 0
0 Ml+1

]
x = y (3.56)

for x; and finally solving for w [
ŨB ŨF
0 I

]
w = x. (3.57)

In turn, the expressions in (3.55) and (3.57) also need to be solved in two steps. Assuming vectors
y and r̂ are split conformally with the blocks of the factors, for (3.55) we have[

L̃B 0

L̃E I

] [
yB
yC

]
=

[
r̂B
r̂C

]
. (3.58)

This system is then tackled by initially solving the unit lower triangular system

L̃ByB = r̂B (3.59)

for yB, and then computing
yC := r̂C − L̃EyB. (3.60)

Splitting the vectors like before, Equation (3.56) involves the diagonal-matrix multiplication

xB := D−1B yB, (3.61)

and the recursive step
xC := M−1l+1yC . (3.62)

71

CHAPTER 3. SOLUTION OF LARGE SPARSE LINEAR SYSTEMS AND ILUPACK

In the base step of the recursion, the size of Ml+1 is equal to zero and then only xB has to be
computed. Finally, after an analogous partitioning, equation (3.57) can be reformulated as

wC := xC (3.63)

and
ŨBwB = xB − ŨFwC , (3.64)

such that z is simply obtained form z := D(P̂ T (P Tw)).
Remember that, with the purpose of saving memory, ILUPACK discards the factors L̃E and ŨF

once each level of the preconditioner is calculated, keeping only two sparse rectangular matrices E
and F , frequently much sparser than L̃E and ŨF , such that L̃E = EŨ−1B D̃−1B , and ŨF = D̃−1B L̃−1B F .
This improvement changes (3.60) to

yC := r̂C − EŨ−1B D̃−1B yB, (3.65)

which, in combination with (3.59), yields

yC := r̂C − EŨ−1B D̃−1B L̃−1B r̂B. (3.66)

Furthermore, (3.64) also changes to

ŨBwB = D̃−1B yB − D̃−1B L̃−1B FwC . (3.67)

Now, (3.66) can be tackled by first solving

L̃BD̃BŨBsB = r̂B (3.68)

for sB, and then obtaining
yC := r̂C − EsB, (3.69)

while (3.67) can be tackled by solving

L̃BD̃BŨB ŝB = FwC (3.70)

for ŝB, and then performing
wB := sB − ŝB. (3.71)

To summarize, at each level the procedure implemented by ILUPACK performs two sparse
matrix-vector multiplications and solves two linear systems of the form L̃D̃Ũx = b. In addition,
three other types of operations are distinguished: diagonal scaling, vector permutation, and vector
updates of the form x := a− b.

72

CHAPTER 4

Exploiting Task-Parallelism in ILUPACK

The increment of thread-level hardware parallelism in multicore architectures, leading to pro-
cessors that nowadays support between dozens and hundreds of threads (e.g., 64 threads in the
IBM PowerPC A2 processor and 240 in the Intel Xeon Phi processor), has guided the development
of several data-flow programming models in the past few years with the purpose of decoupling
the description of an algorithm from the “mechanics” of its parallel execution, hence reducing the
coding effort and improving source code portability.

Data-flow programming models assume that data dependencies characterize a number of “cor-
rect” concurrent schedules by defining a partial execution order on the operations (tasks) that
compose the algorithm. In general, modern data-flow programming models are assisted by a spe-
cialized runtime which analyzes data dependencies, and orchestrates the parallel execution in order
to optimize performance. Emblematic examples of these type of programming models include,
among others, DAGuE/ParSEC [54], Harmony [67], Mentat [89], Qilin [130], StarPU [177], Uin-
tah [44], XKaapi [84], and the target of our work, OmpSs [74, 2]. For the particular domain of
dense linear algebra, the application of these models and/or similar approaches has resulted in a
collection of high performance libraries (DPLASMA, libflame, MAGMA, PLASMA, etc.). How-
ever, the application of data-flow programming paradigms to the parallel solution of sparse systems
of linear equations is still unripe, mostly due to sparse linear algebra operations being much more
challenging than their dense counterparts. In particular, data-flow runtime-assisted linear system
solvers using supernodal direct and ILU-type iterative methods have been proposed only recently,
for example in [106, 119, 122] and [22], respectively.

In this chapter we analyze the PCG method in ILUPACK with the goal of exposing task
parallelism. The parallelization scheme can be leveraged to implement different versions of the
solver using OmpSs, MPI and a combination of both, achieving significant performance gains.
Moreover, this scheme can be also applied to easily parallelize other ILU-type iterative solvers.

The chapter is structured as follows. Section 4.1 describes how to extract the task concurrency
in the PCG method. Section 4.2 reviews the parallel programming models relevant for this disser-
tation. Section 4.3 introduces the target platforms and the test cases employed in the evaluation
experiments of this chapter. Next, Sections 4.4 and 4.5 present two task-parallel implementations
of ILUPACK solver for multicore processors with OmpSs and for clusters of multicore processors
using MPI+OmpSs. Section 4.6 provides optimized implementations with OmpSs and MPI for

73

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

NUMA platforms and manycore hardware co-processors based on the Intel Xeon Phi. Finally,
some concluding remarks are included in Section 4.7.

4.1 Task-Level Concurrency in the PCG Method

We first present the strategy which is followed to extract task concurrency in the PCG method in
ILUPACK. In Subsection 4.1.1 we define the main concepts to partition a matrix into an adjacency
graph. Then, in Subsections 4.1.2 and 4.1.3 we explain how to use the adjacency graph to extract
task parallelism in the preconditioner computation, its application, and the remaining operations
in the PCG method.

4.1.1 Nested dissection

For the computation of approximate factorizations, concurrency can be exposed by means of
graph-based algorithms, such as graph coloring or graph partitioning techniques. Among these
classes of algorithms, nested dissection orderings enhance parallelism in the approximate factoriza-
tion of A by partitioning its associated adjacency graph G(A) into a hierarchy of vertex separators
and independent subgraphs [47]. For example, in Figure 4.1, G(A) is partitioned after two levels of
recursion into four independent subraphs, G(3,1), G(3,2), G(3,3), and G(3,4), first by separator S(1,1)
and then by separators S(2,1) and S(2,2) This hierarchy is constructed so that the size of the ver-
tex separators is minimized while simultaneously balancing the size of the independent subgraphs.
Therefore, relabeling the nodes of G(A) according to the levels in the hierarchy leads to a reordered
matrix, A← P TAP , with a structure amenable to efficient parallelization. In particular, the lead-
ing diagonal blocks of P TAP associated with the independent subgraphs can be first processed
independently; after that, S(2,1) and S(2,2) can be computed in parallel, and finally, the separator
S(1,1) is processed. This type of concurrency can be expressed as a binary task dependency tree
(see Figure 4.1), where the nodes represent concurrent tasks and the edges dependencies among
them.

State-of-the-art reordering software packages, such as Metis [135] or Scotch [174], provide fast
and efficient multi-level variants of nested dissection orderings [116]. There also exist parallel
versions of these packages (ParMetis [117], mt-metis [123] and PT-Scotch [60]) that exploit several
types of concurrency during the computation of the permutation. Specifically, in ILUPACK we
use parallel versions of the Metis package, depending on whether the implementation is for shared-
memory (mt-Metis) or distributed-memory (ParMetis).

ParMetis

ParMetis [117] is an MPI-based parallel library that implements a variety of algorithms for
partitioning unstructured graphs and meshes, as well as to obtain fill-reducing orderings of sparse
matrices. ParMetis extends the functionality provided by Metis and includes routines that are espe-
cially suited for parallel Adaptive Mesh Refinement (AMR) computations and large-scale numerical
simulations. In particular, ParMetis provides the following functionality [118]:

• Partition unstructured graphs and meshes.

• Repartition graphs that correspond to adaptively refined meshes.

• Partition graphs for multi-phase and multi-physics simulations.

• Improve the quality of existing partitionings.

74

4.1. TASK-LEVEL CONCURRENCY IN THE PCG METHOD

S(2,2)S(2,1)

S(1,1)G(3,1) G(3,4)

G(3,2) G(3,3) ��
��
��

��
��
�����
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

A G(A)

S(1,1)

 G(2,1) G(2,2)

First

Second

PA

(2,2)

(2,1)

(1,1)

(3,1)

(3,2)

(3,4)(3,3)

TT

Nested Dissection

Figure 4.1: Nested dissection reordering. In this example G(A) is partitioned into four indepen-
dent subgraphs. Colors are used to illustrate the correspondence between the blocks of
the permutation to be factorized, and the tasks in charge of their factorization (nodes
of the tree).

• Compute fill-reducing orderings for sparse direct factorization.

• Construct the dual graphs of meshes.

Concretely, in ILUPACK we use the routine ParMETIS V3 NodeND to compute a fill-reducing
ordering of a sparse matrix using multi-level Nested Disection (ND) [118]. This routine returns an
array with the result of the ordering (permutation), together with the number of nodes for each
sub-domain and each separator. With this information, the application builds their own structures
representing the adjacency graph corresponding with the sparse matrix.

mt-Metis

Previous implementations of ILUPACK for shared-memory leveraged a modified version of
serial Metis. This tuned version, parallelized based on Metis, attained a speed-up factor of 2× on
16 cores. More recently, in [123], the Metis’ developers presented an efficient version of the library
for multicore architectures.

In [123], the authors presented shared-memory parallel algorithms for generating vertex separa-
tors, using those vertex separators to generate a fill-reducing ordering via ND in parallel. They also
introduced task scheduling to maximize cache efficiency for the ND problem, achieving a speed-up
of up to 10× on 16 cores, while producing orderings with only 1.0% more fill-in and requiring
only 0.7% more operations than the original ND routines included in Metis. The proposed imple-
mentation, called mt-Metis, is 1.5× faster, producing 3.7% less fill-in, and requiring 14.0% fewer
operations than ParMetis [116].

Although the mt-Metis implementation offers an efficient parallelization of the Metis library, it
had some drawbacks for our purpose. First, mt-Metis only generates the permutation associated
to the partition, but not the tree structure, which is required by ILUPACK. Hence, we modified

75

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

the implementation to return a vector with the partition of the left and right nodes, as well as the
size of the separator, for each level of the tree. From this vector, we created the tree structure for
ILUPACK. Second, mt-Metis partitions the graph with a number of leaves equal to the number of
cores executing the code. We adjusted the original library to obtain a tree with more leaves than
cores. Finally, the recursion in mt-Metis is stopped when the graph is smaller than a certain size,
and the Multiple Minimum Degree Ordering (MMDO) [127] is applied to the remaining graph.
In order to accelerate the execution, we introduced two additional options to finish the recursion.
Next, we resume the three options to finish the ND computation in mt-metis execution:

• Execute recursively ND and, when the graph is smaller than a certain size, apply MMDO to
the remaining graph. This is the option employed by the original library.

• Execute recursively ND until the tree has the desired number of leaves, and then apply MMDO
to the remaining graph. The difference with respect to the previous option is that here we do
not have to wait until the graph is smaller than a specified size. We can stop when we have
a graph with the leaves indicated in the execution.

• Execute recursively ND until the tree has the desired number of leaves, and then finish the
execution avoiding the ordering step.

Note that the main objective of the new alternatives is to reduce the execution time of the
algorithm.

4.1.2 Computation of the preconditioner

In order to design a task-parallel version of ILUPACK, we need to decompose the computation
of the preconditioner into tasks, identifying the dependencies among them, and mapping the tasks
to the execution nodes. For that purpose, the task-parallel version exploits the connection between
sparse matrices and adjacency graphs [166], extracting parallelism via ND, as explained in Subsec-
tion 4.1.1. Consider for example a graph-based reordering, defined by a permutation P̄ ∈ Rn×n,
such that

P̄ TAP̄ =

 A00 0 A02

0 A11 A12

A20 A21 A22

 . (4.1)

Computing partial ILU factorizations of the two leading blocks, A00 and A11, yields the following
partial approximation of P̄ TAP̄L00 0 0

0 L11 0

L20L21 I

D00 0 0

0 D11 0

0 0 S22

U00 0 U20

0 U11 U21

0 0 I

+E01,

where

S22 = A22 − (L20D00U20)− (L21D11U21) + E2 (4.2)

is the approximate Schur complement. By recursively proceeding in the same manner with S22, the
ILU factorization of P̄ TAP̄ is eventually completed. At this point we note that for SPD matrices,
instead of applying an ILU factorization, we apply an IC factorization, so that U = LT .

The block structure in (4.1) exposes a coarse-grain concurrency during these computations.
Concretely, the permuted matrix there can be decoupled into two submatrices, so that the ILU

76

4.1. TASK-LEVEL CONCURRENCY IN THE PCG METHOD

T0 T1 T2 T3

T5T4

T6

Figure 4.2: Dependency tree of the diagonal blocks. Task Tj is associated with block Ajj .

factorizations of the leading block of both submatrices can be concurrently obtained:

A22 = A0
22 +A1

22 ,

[
A00 A02

A20 A0
22

]
=

[
L00 0

L20 I

][
D00 0

0 S0
22

][
U00 U20

0 I

]
+E0,

[
A11 A12

A21 A1
22

]
=

[
L11 0

L21 I

][
D11 0

0 S1
22

][
U11 U21

0 I

]
+E1.

(4.3)

Then, we can also compute in parallel the Schur complements corresponding to both partial ap-
proximations:

S0
22 = A0

22 − (L20D00U20) + E0
2 ; S1

22 = A1
22 − (L21D11U21) + E1

2 .

However, the construction of (4.2) involves a synchronization step before the addition of these two
blocks can be computed

S22 ≈ S0
22 + S1

22 , E2 ≈ E0
2 + E1

2 . (4.4)

To unveil increasing amounts of task parallelism, we can identify a larger number of independent
diagonal blocks, by applying permutations analogous to P̄ on the two leading blocks. For example,
by reordering and renaming the blocks properly, a block structure similar to (4.1) is obtained:

Â00 0 Â02 0 0 0 ∗
0 Â11Â12 0 0 0 ∗
Â20Â21Â22 0 0 0 ∗
0 0 0 Â00 0 Â02 ∗
0 0 0 0 Â11Â12 ∗
0 0 0 Â20Â21Â22 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

→

A00 0 0 0 A04 0 A06

0 A11 0 0 A14 0 A16

0 0 A22 0 0 A25 A26

0 0 0 A33 0 A35 A36

A40A41 0 0 A44 0 A46

0 0 A52A53 0 A55 A56

A60A61A62A63 A64A65 A66

. (4.5)

Figure 4.2 illustrates the dependency tree for the factorization of the diagonal blocks in (4.5).
The nodes that lie in the same level of the tree can be factorized in parallel and the edges of the
preconditioner Directed Acyclic Graph (DAG) define the dependencies between the diagonal blocks
(tasks), i.e., the order in which these blocks of the matrix have to be processed. We identify three
classes of nodes in the figure:

• leaf nodes. These nodes are responsible for the factorization of the four leading diagonal
blocks in parallel.

• intermediate nodes. They factorize in parallel the next two intermediate diagonal blocks,
A44 and A55. These blocks cannot be factorized unless the leading diagonal blocks correspond-
ing to its children have already been factorized, i.e, A00 - A11 and A22 - A33 respectively.

77

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

��
��
��

��
��
��

��
��
��
��
���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

+ + +=

(3,1) (3,3)

contribution

(2,2)

blocks

Local submatrix

To be factorized by (3,2)

Local contributions from (3,2) to (2,1)

Local contributions from (3,2) to (1,1)

(3,4)

(2,1)

(1,1)

(3,2)

PTAP

Figure 4.3: Matrix decomposition and local submatrix associated to a single node of the task tree.

• root node. This node sequentially factorizes the last diagonal block, A66. This approxima-
tion can be only computed when all the preceding diagonal blocks have been processed.

The parallel computation of the preconditioner starts by disassembling A, with one submatrix
for each leaf node, as shown in Figure 4.3. For instance, the submatrices in (4.5) are decomposed
as A00 A04 A06

A40

A60

A0
44 A0

46

A0
64 A0

66

 ,
A11 A14 A16

A41

A61

A1
44 A1

46

A1
64 A1

66

 ,
A22 A25 A26

A52

A62

A2
55 A2

56

A2
65 A2

66

 ,
A33 A35 A36

A53

A63

A3
55 A3

56

A3
65 A3

66

 , (4.6)

where
A44 = A0

44 +A1
44 , A55 = A2

55 +A3
55 , A66 = A0

66 +A1
66 +A2

66 +A3
66 . (4.7)

Thus, the partial ILU factorization of these submatrices can be computed concurrently. For exam-
ple, computing the ILU of A00, we obtain the following partial approximation:L̃00 0 0

L̃40

L̃60

I 0

0 I

D̃00 0 0

0
0

S̃0
44 S̃0

46

S̃0
64 S̃0

66

Ũ00 Ũ04 Ũ06

0
0

I 0

0 I

+ E00 . (4.8)

When the partial factorizations of all nodes are completed, the processes in charge of these tasks
send the local Schur complement to the corresponding intermediate node, which then accumulates
them to continue the process,[

Ŝ0
44 Ŝ0

46

Ŝ0
64 Ŝ0

66

]
+

[
Ŝ1
44 Ŝ1

46

Ŝ1
64 Ŝ1

66

]
=

[
Ŝ44 Ŝ46
Ŝ64 Ŝ01

66

]
,

[
Ŝ2
55 Ŝ2

56

Ŝ2
65 Ŝ2

66

]
+

[
Ŝ3
55 Ŝ3

56

Ŝ3
65 Ŝ3

66

]
=

[
Ŝ55 Ŝ56
Ŝ65 Ŝ23

66

]
.

78

4.1. TASK-LEVEL CONCURRENCY IN THE PCG METHOD

���
���
���

���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
���
���
���
���

����
����
����
����

����
����
����

����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

���
���
���

���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

������
������
������
������

����
����
����
����

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
������
���
���
���

���
���
���
���

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������������

��

���
���
���
������
���
���
���

���
���
���
���

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������������

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����������������������������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
�������������
�����
�����

�����
�����
�����

��
��
��

��
��
��

���������������
���
���

���
���
���

���
���
���
���

���
���
���
��� ��������

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���������

��
��
��
��

����

��
��
��

��
��
��

��
��
��
��

���
���
���
���
���
���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
����

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

���������������������������������
�����
�����
�����

�����
�����
�����
��������

���
���
���

���
���
���
��� ��

��
��
��

��
��
��
���
�
�
�

��
��
��
����
��
��
��

���
���
���
������
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
��������
����
����

����
����
����

�����
�����
�����

�����
�����
�����

��
��
��

��
��
��

��
��
��

��
��
��

��

(1,2)

(2,1) (2,2)

(3,1)

(1,4)(1,3)(1,1)
updated
untouchedfactorized

pivoted

on the leading block
only bad pivots

sc
compute

continue

postpone

level completed

continue

factorization

current factorization step

locally updated entries

1st local algebraic

1st local algebraic level

after several
factorization steps

contribution
blocks

‖eTkL−1‖ ≤ κ

‖eTkL−1‖ > κ

Figure 4.4: A step of the Crout variant of the parallel preconditioner computations.

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��

�
�
�
�

�
�
�
�

������ ���� ��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

����������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
��
�
�
�

�
�
�
�
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��

��
��
�� ��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��
��

���
���
���

���
���
���

��
��
��

��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��
��

��
��
��
��

���
���
���
���

���
���
���

���
���
�����

��
��
��

��
��
��

��
��
��

(2,1)

(1,1) (1,2)

(2,1)

(1,1) (1,2)

(2,2)

(3,1)

(1,4)(1,3)

Merge Contributions

SC SC

AA

+ =

Figure 4.5: Task (2, 1) computes its own matrix from the Schur complements resulting from the
local computations of its children nodes ((1,1) and (1,2)).

The matrix resulting by assembling these two submatrices presents the same structure as that
defined in (4.1):

[
Ŝ44 Ŝ46
Ŝ2
64 Ŝ01

66

]
⊕

[
Ŝ55 Ŝ56
Ŝ2
65 Ŝ23

66

]
=

 S44 0 S46
0 S55 S56
S64 S65 S66

 , S66 = S01
66 + S23

66 . (4.9)

This process continues traversing the dependency tree, until the root task factorizes its local sub-
matrix.

The main change of this parallel version with respect to the sequential case is that the com-
putation is restricted to the leading block, and therefore the rejected pivots are moved to the
bottom-right corner of the leading block; see Figure 4.4, which illustrates the factorization step of
a leaf node in the first level of the DAG. Figure 4.5 shows the multi-level factorization computed
in each internal node, and how the merge step is performed to obtain the matrix related to the
internal node (2,1).

79

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

Another change is that preconditioning introduces additional levels in the recursive definition
of ILU preconditioners. Thus, the parallel ILU preconditioner contains numerical and structural
levels in its recursive definition. Therefore, different preconditioner DAGs involve distinct recursion
steps yielding distinct preconditioners, which nonetheless exhibit close numerical properties to that
obtained with the sequential ILUPACK [22].

4.1.3 The iterative PCG solve

The data dependencies in the iterative PCG solve (see the while loop in Figure 3.2) define a
partial order for the operations that compose the loop’s body. Specifically, the order vj → αj →
rj+1 → zj+1 → σj+1 → βj → pj+1 must be preserved, but xj+1 and τj+1 can be computed any
time once αj and rj+1 are respectively available: αj → xj+1, rj+1 → τj+1. (For simplicity, we do
not consider here the dependencies between operations from different iterations.) However, further
concurrency can be exposed by dividing some of these operations into subtasks.

Our parallelization of the PCG splits the data structures associated with these operations
(as in (4.7)) to distribute the data into the different cores/processors. In order to reduce the
synchronization steps, we consider two schemes to distribute the data for the structures involved
in the operations of the PCG:

inconsistent distribution: The values of some data are distributed as,

Bi = Bi
0 +Bi

1 +Bi
2 +Bi

3 ,

where the entries of the contribution blocks store partial contributions to the “global” entries
of the data structure. The final value is obtained adding the partial entries of the contribution
blocks.

consistent distribution: Redundant copies of the elements are stored as

Bc = Bc
0 = Bc

1 = Bc
2 = Bc

3,

where the entries of the contribution blocks store redundant copies of the “global” entries of
the data structure; i.e, the same value is repeated in all the blocks.

In order to reduce the communication steps, the operations in the parallel implementation of PCG
need to adopt an specific distribution. Next, we define the best distribution for each PCG operation:

fully independent operations: The vectors involved in PCG are partitioned conformally
to matrix A, see e.g. (4.5), so that many operations only access the data associated with
the leaves of the preconditioner DAG. The distribution that is chosen to store the operands
determines the proper working of the operation:

SpMV. The distributed matrix-vector product is Bixc = yi, where the matrix is inconsistent,
the vector is consistent, and the result is inconsistent.

axpy. The consistency of the vectors involved in the axpy operations has to be the same.
For example, xc + yc = bc or xi + yi = bi.

dot. This product involves different consistencies in the vectors, with one inconsistent and
the other consistent ((xi)T yc = αi or (xc)T yi = αi).

2-norm. This operation computes a dot and a square root. Therefore, it requires different
type of vectors, like the dot product.

80

4.2. PARALLEL PROGRAMMING MODELS

Note that the dot operation obtains an inconsistent scalar, and therefore a global synchro-
nization/communication is required to obtain the corresponding consistent value.

preconditioner application: As the definition of the recursion is maintained, the operations
to apply the preconditioner, explained in the previous chapter, remain valid. However, to
complete the recursion step in the task-parallel case, the preconditioner DAG has to be
crossed twice per solve zj+1 := M−1rj+1 at each iteration of the PCG: once from bottom
to top, and a second time from top to bottom. Each transition requires a synchronization/
communication step, adding vectors when the DAG is traversed upward, and copying vectors
in the reverse case. Moreover, the concurrency increases/decreases as we move towards/away
from the leaves. In this operation, the preconditioner (M) is consistent, the operand vector
is inconsistent, and the result vector will be consistent.

transforms: It is possible to change the distribution of each operand as follows. For example,
if we need a data structure with a specific type of consistency, and this is the result from a
previous operation, but with an inappropriate consistency type, we can convert the structure.
We have two types of transforms:

xi → xc: To change from inconsistent to consistent, we proceed as in the preconditioner
application, but with M = I. Thus, no changes are made inside each node, and only
the additions and copies related to each DAG transition are applied.

xc → xi: The transformation of a data structure from consistent to inconsistent only requires
a local adjustment.

In Figure 4.6 we illustrate the PCG algorithm with the combination of different types of dis-
tribution (consistent and inconsistent) for each operation, and the additional reductions required
to complete the dots. Moreover, we have changed the order of some operations to merge the two
operations that cross the DAG (O06 + O10).

Note that the number of leaves in the DAG grows exponentially with the number of nested
dissection steps, so that the degree of concurrency can be easily increased by expanding additional
levels. However, there exists a balance between the number of levels, that determines the number
of independent tasks, and the convergence rate of the procedure. Concretely, each dissection step
introduces additional numerical levels in the computation, yielding both a different DAG and a
distinct preconditioner. While the numerical properties of all these preconditioners are similar, in
many cases the number of iterations of the PCG solver grows significantly after a few levels (8 and
more) are expanded.

4.2 Parallel Programming Models

The past few decades have witnessed a steady advancement in computer performance. This
improvement is due, among other factors, to the introduction of parallel architectures. Micropro-
cessors drove performance increments and cost reductions in computer applications for more than
two decades. However, around 2003, the performance increases stopped because heat dissipation
and energy consumption issues limited the CPU clock frequencies and the number of tasks that
can be performed within each clock period [68]. The solution adopted was to switch to a model
where the microprocessor has multiple processing units, known as cores [108].

Nowadays, there are multicore architectures integrating a few cores into a single microprocessor,
and manycore architectures consisting of a large number of cores. Task parallelism is among the
best alternatives to take benefit of the additional hardware concurrency in these new architectures.

81

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

O0. A→M O0. Preconditioner computation
Initialize r0, p0, x0, σ0, τ0; j := 0
while (τ cj > τmax) Iterative CG solve

O01. vij := Aipcj O01. spmv

O02. δij := (pcj)
T vij O02. dot

Reduction (δij)

O03. αcj := σcj/δ
c
j O03. scalar operation

O04. xcj+1 := xcj + αjp
c
j O04. axpy

O05. rij+1 := rij − αjvij O05. axpy

O06. zcj+1 := (M c)−1rij+1 O06. preconditioner application

rcj+1 ← rij+1 Transformation

O07. σij+1 := (rij+1)
T zcj+1 O07. dot

O10. τ ij+1 := (rc)Tj+1r
i
j+1 O10. 2-norm

Double Reduction (σij , τ
i
j)

O08. βcj := σcj+1/σ
c
j O08. scalar operation

O09. pcj+1 := zcj+1 + βcjp
c
j O09. xpay (similar to axpy)

j := j + 1
end while

Figure 4.6: Algorithmic formulation of the PCG method taking into account the consistency of
the data structures.

Therefore, the applications have to be rewritten by the developer, partitioning the workload into
tasks, and mapping these tasks to the workers (cores).

Traditionally, parallel systems have been divided into two broad categories: shared memory
and distributed memory [176]. The first type provides a single memory address space accessible
to all the processors. In the second type, instead of having a global address space, each processor
has its own memory. More recently, hybrid shared-distributed memory systems have been built,
combining the features of both architectures.

The conventional parallel programming models include a pure shared memory model [68, 176]
called OpenMP [150, 58, 59], and a pure message-passing model [68, 176] named MPI [90, 91, 152].
However, today it is common to mix both shared and distributed memory models to improve
the performance on current hybrid architectures. In addition, the availability of General Purpose
computation on GPUs, and other manycore accelerators, has lead to the Heterogeneous Parallel
Programming (HPP) model, which takes advantage of the capabilities of multicore CPUs and
manycore GPUs.

The objective of this dissertation is the parallelization of ILUPACK on multicore and manycore
processors/accelerators. For that purpose, we first developed a data-flow version of this code with
considerable levels of thread-concurrency using OmpSs, and then we implemented a hybrid version
of ILUPACK using MPI+OmpSs to exploit the benefits of each programming model.

In this section we revisit the parallel programming models which are the target of our work:
OpenMP, OmpSs, and MPI.

82

4.2. PARALLEL PROGRAMMING MODELS

4.2.1 OpenMP

OpenMP [58, 59] is a shared-memory API that provides a portable and scalable model to
facilitate shared-memory parallel programming. OpenMP is implemented as a combination of a set
of compiler directives (#pragmas), and a runtime providing both management of the thread pool
and a set of library routines. These directives can be added to a sequential program in Fortran, C,
or C++ to describe how the work is to be shared among the threads that will execute on different
processors or cores and to orchestrate accesses to shared data as needed. Therefore, OpenMP
requires specialized compiler support to understand and process these directives.

The use of threads is highly structured in OpenMP because it was designed specifically for
parallel applications. In particular, the switch between sequential and parallel sections of code
follows the fork/join model. Thus, when a parallel region is reached, a single thread of control
splits into a number of independent threads (fork), and the sequential execution is resumed when
all the threads have completed the execution of their tasks (join). OpenMP is specially suited to
exploit loop parallelism, and from version 3.0, it can also address the task parallelism.

The success of OpenMP can be attributed to a number of factors. One is its strong emphasis
on structured parallel programming. Another is that OpenMP is comparatively simple to use,
since the burden of working out the details of the parallel program is up to the compiler. It has
the major advantage of being widely adopted, so that an OpenMP application will run on many
different platforms from small to large Symmetric Multi-Processing (SMP) architectures and other
multi-threading hardware. Nowadays, the recent versions of GNU and Intel compilers give support
to the OpenMP standard.

4.2.2 OmpSs

OmpSs [2, 74] is a task-based programming model developed at Barcelona Supercomputing
Center (BSC). The model supports automatic detection of data dependencies between tasks, deter-
mined at execution time by hints given in the form of directionality clauses embedded into compiler
directives. Armed with this information, a task graph is generated during the execution that is
then scheduled by the OmpSs runtime to the cores, exploiting the inherent task parallelism. This
feature is now also integrated in the OpenMP 4.0 standard.

The use of data-dependencies between the different tasks of the program in OmpSs enables asyn-
chronous parallelism. When a function is annotated with the task construct, each invocation of that
function becomes a task creation point. The task construct allows to express data-dependencies
using in (standing for input), out (standing for output) and inout (standing for input/output)
clauses to this end. Each time a new task is created, its in and out dependencies are matched
against those of existing tasks. If a Read-after-Write (RaW), Write-after-Write (WaW) or Write-
after-Read (WaR) dependency is found, the task becomes a successor of the corresponding tasks.
This process creates a task dependency graph at runtime, so that tasks are scheduled for execu-
tion as soon as all their predecessors in the graph have finished, or at creation, if they have no
predecessor.

OmpSs can be combined with MPI, providing a highly asynchronous programming model where
communication tasks are overlapped with computation tasks avoiding the need for global synchro-
nization. Another interesting property of OmpSs is the support for heterogeneous platforms, as
it can combine CUDA or OpenCL in regular C/C++ or Fortran codes, relieving the programmer
from performing data transfers, allocating memory or even compiling the kernels, which are all
automatically performed by the OmpSs runtime. OmpSs has been successfully applied to appli-

83

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

cations of different nature, and especially in complex scientific codes targeted in projects such as
Montblanc [138], DEEP [64] and INTERTWinE [115].

4.2.3 MPI

MPI [90, 91, 152] is a standard library interface for writing parallel programs. Its specification
uses message-passing operations where communication between processes is done by ex-changing
messages. Although it is oriented to distributed systems and manycore architectures, it can also
be employed in shared-memory architectures and multicore processors, expanding its area of use.
The goal of MPI is to establish a portable, efficient, and flexible standard for message-passing that
will be widely adopted. In fact, it has become the “industry standard” for writing message-passing
programs on HPC platforms. MPI favors the Single Program Multiple Data (SPMD) and the
Master/Worker program structure patterns.

In the message-passing model, the processes executed in parallel have separate memory address
spaces, and the programmer has to handle the tasks which are computed by each process. Hence,
communication occurs when part of the address space of one process is copied into the address space
of another process. This operation is done cooperatively when the first process executes a send
operation and the second executes a receive operation. Communication modes in MPI comprise
point-to-point, collective, one-sided (since MPI-2), and parallel I/O operations.

In conclusion, MPI is well suited for applications where portability, both in space and in time,
is important. MPI is also an excellent option for task-parallel computations and for applications
where the data structures are dynamic. Today, there exist several public implementations of the
MPI standard, among which MPICH [140], OpenMPI [151] and MVAPICH2 [142] stand out.

4.3 Setup and Test Cases

In the following sections we describe how to exploit task parallelism in ILUPACK via solutions
based on different programming models, and we also optimize the ILUPACK PCG solver for NUMA
architectures and manycore accelerators. Previous to this presentation, in this section we describe
the target platforms and the test cases employed in the evaluation experiments of this dissertation.

Setup

All experiments in the following sections were performed using IEEE 754 double-precision arith-
metic on the following five platforms:

int sandy is a server equipped with two Intel Xeon E5-2670 (8-core) processors at 2.1 GHz and
32 Gbytes of DDR3 RAM. (Section 4.4).

amd is a server with an AMD Opteron 6276 (16-core) processor at 2.1 GHz and 64 Gbytes of
DDR3 RAM. (Section 4.4).

marenostrum is a large-scale computing infrastructure at BSC, that connects 3,056 compute
nodes via an Infiniband Mellanox FDR10 network. Each node contains two Intel Xeon E5-
2670 processors for a total of 16 cores per server (2.6 GHz). The nodes employed in our
experiments were also equipped with 64 Gbytes of DDR3 RAM. (Section 4.5).

xeon phi is a board with an Intel Xeon Phi 5110P co-processor attached to a server through
a PCI-e Gen3 slot. (The tests on this board were ran in native mode and, therefore, the

84

4.4. LEVERAGING TASK-PARALLELISM WITH OMPSS

specifications of the server are irrelevant.) The accelerator board comprises 60 x86 cores
running at 1,053 MHz and 8 Gbytes of GDDR5 RAM. (Section 4.6).

opteron is a server with four AMD Opteron 6276 (16-core) processors at 2.1 GHz and 64 Gbytes
of DDR3 RAM. (Section 4.6)

Test cases

For the analysis, we mainly employed a large-scale linear system corresponding to the Laplacian
equation −∆u = f in a 3D unit cube Ω = [0,1]3 with Dirichlet boundary conditions, u = g on ∂Ω,
and a discretization that resulted in a SPD system, with instances of different size; see Table 4.1.

Matrix Dimension n #non-zeros nz Density (%)

Laplace

A100 1,000,000 3,970,000 3.97E-6
A126 2,000,376 7,953,876 1.99E-6
A159 4,019,679 16,002,873 9.90E-7
A171 5,000,211 19,913,121 7.96E-7
A182 6,028,568 24,014,900 6.61E-7
A191 6,967,781 27,762,041 5.72E-7
A200 8,000,000 31,880,000 4.98E-7
A252 16,003,008 63,821,520 2.49E-7
A318 32,157,432 128,326,356 1.24E-7
A400 64,000,000 255,520,000 6.23E-8

Table 4.1: Matrices employed in the experimental evaluation, where nz only accounts for the non-
zeros in the upper triangular part.

In addition, in Section 4.5 we also use an irregular 3D problem −div(Agradu) = f ; in a 3D
domain (see the left part of Figure 4.7), where A(x, y, z) is chosen with positive random coefficients.
Hereafter, we refer to this problem as mygeo3, using linear finite elements for the discretization.
The size and number of non-zero elements of the resulting sparse SPD linear systems depend on
the initial mesh refinement level and the number of additional mesh refinements. Based on the
initial mesh shown in the left part of Figure 4.7, the mesh refinement tool NETGEN [144] refines
the mesh up to two times based on the meshing levels (very coarse, coarse, moderate, fine, very
fine) as provided by the software [131].

In the experiments, all entries of the right-hand side vector b were initialized to 1, and the PCG
was started with the initial guess x0 ≡ 0. For the tests, the parameters that control the fill-in and
convergence of the iterative process in ILUPACK were set as droptool = 1.0E-2, condest = 5,
elbow = 10, and restol = 1.0E-6.

4.4 Leveraging Task-Parallelism with OmpSs

In this section we describe how to exploit task parallelism for the efficient solution of sparse
linear systems on multi-threaded processors via ILUPACK multi-level PCG method [13]. An initial
data-flow version of this code using an ad-hoc runtime based on OpenMP [150] was developed
in [22]. The adoption of OpenMP was enforced by the lack of a general-purpose tool that combined
efficiency, stability and portability. As a result, this solution featured the undesired property of
strongly coupling the numerical algorithm with the ad-hoc runtime. To address this problem, we
investigate the parallelization of ILUPACK PCG on multicore processors with considerable levels
of thread-concurrency using OmpSs.

85

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

Code Initial Mesh # refs n (nnzA) nnzA/n

VC very coarse 0 1,709 16,669 9.75

C coarse 0 9,583 112,563 11.75

M moderate 0 32,429 412,251 12.71

F fine 0 101,296 1,368,594 13.51

VC2 very coarse 2 271,272 3,686,594 13.59

M1 moderate 1 297,927 4,134,255 13.88

VF very fine 0 658,609 9,294,721 14.11

F1 fine 1 882,824 12,562,880 14.23

C2 coarse 2 906,882 12,854,824 14.17

VC3 very coarse 3 2,382,864 34,128,924 14.32

M2 moderate 2 2,539,954 36,768,808 14.48

VF1 very fine 1 5,413,520 78,935,174 14.58

Figure 4.7: Computational domain in 3D for mygeo3 problem (left) and benchmark matrices
resulting from several discretizations of the computational domain (right). The table
(right) presents, for each benchmark, the code, the initial mesh refinement level, the
number of additional refinements, the number of unknowns, the number of nonzero
elements in A, and the average number of nonzero elements in each row.

Next, we describe in detail the process followed to identify and capture data dependencies with
OmpSs, so as to expose and leverage the task parallelism intrinsic to the PCG method in ILUPACK,
while making minimal changes to the legacy codes of this package. Moreover, we explain the
optimization strategies adopted, and illustrate that this parallel data-flow implementation based on
the OmpSs runtime system reports notable performance on highly concurrent platforms from Intel
and AMD. Overall, we provide practical evidence that the OmpSs framework, with its embedded
data-dependency analyzer and dependency-aware scheduling mechanism, provides a seamless and
efficient tool to tackle a complex scientific code like the PCG solver in ILUPACK.

4.4.1 Task-parallel implementation using OmpSs

First, we introduce how to exploit the concurrency by means of OmpSs, resulting in the per-
formance, convergence rate, and numerical accuracy that is illustrated in Section 4.4.2. Using a
pair of data structures, we capture the task dependencies that appear in the two most challenging
operations in the method, namely the calculation of the preconditioner and its application, passing
this information to the OmpSs runtime which can then implement a correct and efficient schedule
of the entire solver.

Task-parallel PCG method

The operations that compose the computation of the iterative PCG solve exhibit a clear set of
dependencies which dictate almost a strict order for their computation (see subsection 4.1.3). These
dependencies can be easily controlled using the OmpSs #pragma omp task directive. For example,
the RaW dependency αj → xj+1 is simply enforced by declaring the headers for the routines that
compute αj := σj/p

T
j vj (dot product) and xj+1 := xj + αjpj (axpy) as follows:

// alpha := sigma / (p^T * v)

#pragma omp task input (n, sigma, p[0:n-1], v[0:n-1]) output(alpha)

void DOT(int *n, double *sigma, double p[], double v[], double *alpha);

86

4.4. LEVERAGING TASK-PARALLELISM WITH OMPSS

// x := x + alpha * p

#pragma omp task input(n, alpha, p[0:n-1]) inout(x[0:n-1])

void AXPY(int *n, double *alpha, double p[], double x[]);

In practice, OmpSs identifies the data dependencies between tasks —i.e., program functions—
that dictate the data-flow execution by tracking the order in which functions are invoked in a serial
execution, checking the directionality (input, output or inout) of each operand in the argument’s list,
and matching the operands’ memory addresses at runtime with those of other tasks in execution.
In the example, the data dependency between the two functions is detected at execution time, when
they are invoked with the same variable α (actually, the same memory address), in the first case
as an output operand and in the second as an input operand.

The real opportunities to exploit concurrency in the entire PCG method lie within the compu-
tations that involve the preconditioner, the sparse matrix-vector product (vj := Apj , SpMV), and
the dot product (pTj vj), as described next.

Task-parallel preconditioner with OmpSs

ILUPACK is quite an involved code, which allocates/releases memory dynamically for complex
data structures, turning the process of capturing the dependencies via OmpSs pragmas which are
directly based on the actual function’s arguments into a delicate exercise. Furthermore, proceeding
along that line would require an extensive reorganization of the package and a full rewrite of
certain parts. For these reasons, we instead decided to create a “skeleton” structure that explicitly
exposes the dependencies in the DAG associated with the preconditioner, analogous to the use of
“representants” in [34]. The key advantage of this approach is that we limit the amount of changes
that are necessary to introduce OmpSs in ILUPACK’s legacy code. Besides, we can leverage
this “skeleton” structure and parallelization scheme to exploit the concurrency in similar solvers
that use different ILU preconditioning techniques to calculate the preconditioner. In fact, we also
parallelized the ILU(0) algorithm by using this methodology with minor changes in the code.

In order to describe how we capture the data dependencies and exploit task parallelism in the
preconditioner with OmpSs, we will consider the DAG/binary tree represented in Figure 4.2 as a
workhorse. In any case, this approach is analogous for unbalanced and/or non-binary trees. The
dependencies of this graph can be easily captured using a matrix of integers, dag[3][ntasks], where
each column contains, for the corresponding task, the identifiers of the left/right descendant tasks
and the ancestor task; see Table 4.2.

In practice, the user explicitly determines the tree-like concurrency of the preconditioner cal-
culation in ILUPACK, before the execution commences, by carefully manipulating a graph-based
symmetric reordering tool (as, e.g., Metis or Scotch) to fix the number of levels and nodes in the
preconditioner, as we explained in Subsection 4.1.1. In consequence, this skeleton structure can be
automatically created and initialized before the parallel computation of the preconditioner begins.

In order to explain how the computation of the preconditioner works, we consider that all the
processing within any of the DAG tasks that compose the preconditioner computation is performed
by invoking the same function, ILUPrecond, with the following header:

void ILUPrecond(SparseMatrix *spMat, SparseFactor *spFact, int taskid);

In this argument’s list, SpMat is an input (i.e., read-only) structure containing the sparse matrix,
SpFact is an input-output (i.e., read-write) structure for the sparse triangular factors, and taskid

is an input integer that identifies the task to be processed during this invocation. For simplicity,

87

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

Task T0 T1 T2 T3 T4 T5 T6

Task id. j 0 1 2 3 4 5 6
Left descendant, dag[0][j] – – – – 0 2 4
Right descendant, dag[1][j] – – – – 1 3 5
Ancestor, dag[2][j] 4 4 5 5 6 6 –

Table 4.2: Contents of the dag data structure representing the nodes (tasks) and dependencies of
the DAG in Figure 4.2. Here, dag[0][j], dag[1][j], and dag[2][j], j = 0,1, . . . ,6,
contain, respectively, the values in the rows labeled as “left descendant id.”, “right
descendant id.”, and “ancestor”. The symbol “–” is used to indicate that the task has
no left/right descendents (i.e., it is a leave) or ancestor (for the root).

we omit several other parameters that are present in the function definition but are not relevant
for the following discussion.

In the parallel implementation, function ILUPrecond is modified to include two new parameters,
corresponding to dag and vector, and its header declaration preceded with the “taskifying” OmpSs
pragma:

#pragma omp task in (vector[dag[0][taskid]], vector[dag[1][taskid]])

out(vector[taskid])

void ILUPrecondPar(SparseMatrix *spMat, SparseFactor *spFact, int taskid,

int vector[], int dag[][]);

Here the contents of vector (in this case an integer array with seven entries, one per task) are
irrelevant, since this structure is only used to create references to different memory addresses, which
are then passed to OmpSs in order to identify the data dependencies.

To illustrate this, consider for example the following sequence of events. When function
ILUPrecond is eventually invoked to process task T5 (i.e., with taskid=5), the runtime encounters
the following call:

// Process task T_5

#pragma omp task in (...) out(vector[5])

void ILUPrecondPar(spMat, spFact, 5, vector, dag);

This identifies vector[5] as an output of this function/task, while the input parameters are irrel-
evant for the discussion. This is eventually followed by a call to the same function, this time to
process task T6 (with dag[1][6]=5):

// Process task T_6

#pragma omp task in (..., vector[5]) out(...)

void ILUPrecondPar(spMat, spFact, 6, vector, dag);

which is also captured by the runtime, identifying vector[5] as an input parameter in this case.
Now, the order of the calls and the references to memory, in both cases to the same address,
&vector[5], first as an output and then as an input, allow the runtime to identify the RaW
dependency T5→T6.

88

4.4. LEVERAGING TASK-PARALLELISM WITH OMPSS

Task-parallel triangular solves with OmpSs

After the computation of the preconditioner M = LDU , its application zj+1 := M−1rj+1 at
each iteration of the PCG method requires the solution of two triangular systems: First, the lower
triangular system y := L̂−1rj+1, with L̂ = LD; and next the upper triangular system zj+1 := U−1y.
The parallelization of the lower triangular system solve presents the same DAG as the preconditioner
computation, and therefore, the same approach can be applied. The function that performs the
processing associated with each one of the DAG tasks, annotated with the corresponding OmpSs
pragma, is:

#pragma omp task in (vector[dag[0][taskid]], vector[dag[1][taskid]])

out(vector[taskid])

void ILULwSolvePar(SparseFactor *spFact, double r[], double y[], int taskid,

int vector[], int dag[][]);

For the parallelization of the upper triangular system, the dependencies of the DAG are inverted,
which simplifies the process since only one dependency must be considered per task. The function
that processes the tasks during this solve is thus annotated as:

#pragma omp task in (vector[dag[2][taskid]]) out(vector[taskid])

void ILUUpSolvePar(SparseFactor *spFact, double y[], double z[], int taskid,

int vector[], int dag[][]);

Here vector[dag[2][taskid]] identifies the corresponding ancestor in the binary tree. With this
scheme, the OmpSs runtime can detect that, for example, vector[6] is an output for task T6 as
well as an input for task T5 (dag[2][5]=6). Therefore, given that during the upper triangular
solve the call to function ILUUpSolve with taskid=6 is encountered by the runtime before that to
the same function with taskid=5, by matching the memory addresses, OmpSs correctly identifies
and controls the RaW dependency T6→T5 for the upper triangular solve.

In summary, the entries of vector[] act as representants for the tasks in the corresponding
DAGs, and together with the dag[][] structure, they govern the dependencies during the compu-
tation of the preconditioner and the iterative solution of the subsequent triangular systems.

Task-parallel sparse-matrix vector product with OmpSs

For this operation, we exploit that, after applying the appropriate recursive graph-basic reorder-
ing, defined by P (see Section 4.1.2), matrix A is disassembled into a collection of submatrices,
one per leaf task, like that in (4.3). Thus, the product vj := (P TAP)pj can be decomposed into a
number of “independent” smaller matrix-vector products (e.g., 4 in equation (4.5)). This calcula-
tion is parallelized using OmpSs pragmas that render a concurrent parallel execution of the small
matrix-vector suboperations.

Task-parallel dot product with OmpSs

This operation calculates a single dot product per leaf task, because each task contains a block
of the operand vectors, disassembled like in the sparse-matrix vector product (Subsection 4.4.1).
Afterwards, there is a transformation of the scalar from inconsistent to consistent state, imple-
mented as a reduction of the subvectors local to each thread. This involves an atomic addition and,
therefore, a synchronization/barrier at the end of this operation (pragma omp taskwait).

89

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

4.4.2 Optimization and experimental results

In this section we introduce two optimization strategies to improve the performance of the
previous implementation of ILUPACK using OmpSs. Furthermore, we evaluate the optimized
parallelization in high-end multicore platforms equipped with Intel and AMD processors. Our
results report significant performance gains, demonstrating that OmpSs provides an efficient and
close-to-seamless means to leverage the concurrency in a complex scientific code like ILUPACK.

All experiments in this section were performed on the int sandy and amd platforms, described
in Section 4.3. Moreover, the software included the Mercurium C/C++ compiler (1.99.0) with
support for OmpSs, Metis (4.0.3) for the graph reorderings, and ILUPACK (2.4). For the evaluation
we employed the A200 matrix (see Table 4.1).

Prioritizing tasks

Taking into account that the bulk of the computational load is concentrated in the leaves, during
the computation of the preconditioner and the subsequent iterative PCG solve, it is important to
assign priorities so that the leaves of the task dependency trees are executed first. The primary
reason for advancing the execution of these tasks is that it provides a better chance to balance the
distribution of the workload among the threads.

In order to assign priorities using OmpSs, we had to distinguish the leaf tasks in the calls to
ILUPrecond, ILULwSolve and ILUUpSolve; and include the appropriate priority clause as part of the
taskifying directive. For example, for the first routine, we created two different routine calls:

#pragma omp task in(...) out(...) priority(high)

void ILUPrecondPar_LeafTask(...);

#pragma omp task in(...) out(...) priority(low)

void ILUPrecondPar_NoLeafTask(...);

which internally simply invoked the original routine ILUPrecond.

The effect of introducing priorities on the computation of the preconditioner is graphically
illustrated in Figure 4.8, which clearly shows how the priority mechanism enforces that the leaves
of the task dependency tree are executed first. (All execution profiles in this dissertation were
obtained with Extrae [79] v2.5.1.)

Controlling task granularity to reduce overhead

Our initial experiments with the iterative PCG stage revealed an excessive cost of the vector
operations (dot product, axpy update, and 2-norm), much higher than could be expected from
their theoretical cost; see the top plot in Figure 4.9. Further investigation revealed that this
overhead was due to the large number of tasks that were created for each vector operation. To
tackle this problem, we merged certain operations of the PCG iteration in order to increase their
granularity. In particular, for the sequence of operations that compose the PCG loop in Figure 4.6,
we merged the computation of vj with αj (SpMV with dot product); xj+1 and rj+1 (axpys); and
ζj+1 with τj+1 (dot product and vector 2-norm).

Figure 4.9 reveals the outcome of collapsing these vector operations, showing much narrower
time “bands” for the execution of the corresponding tasks in the merged version.

90

4.4. LEVERAGING TASK-PARALLELISM WITH OMPSS

Thread 4

Thread 9

Thread 10

Thread 12

Thread 13

Thread 14

Thread 16

Thread 1

Thread 2

Thread 6

Thread 8

Thread 3

Thread 5

Thread 7

Thread 11

Thread 15

Thread 4

Thread 9

Thread 10

Thread 12

Thread 13

Thread 14

Thread 16

Thread 1

Thread 2

Thread 6

Thread 8

Thread 3

Thread 5

Thread 7

Thread 11

Thread 15

ILUPrecond no leafILUPrecond leaf

Figure 4.8: Trace of the preconditioner computation without and with priorities (top and bottom,
respectively) on the Intel Xeon E5-2670, using 16 cores/threads and a decomposition
of the sparse matrix into a tree with 32 leaves, for the A200 problem.

Thread 4

Thread 9

Thread 10

Thread 12

Thread 13

Thread 14

Thread 16

Thread 1

Thread 2

Thread 6

Thread 8

Thread 3

Thread 5

Thread 7

Thread 11

Thread 15

Thread 4

Thread 9

Thread 10

Thread 12

Thread 13

Thread 14

Thread 16

Thread 1

Thread 2

Thread 6

Thread 8

Thread 3

Thread 5

Thread 7

Thread 11

Thread 15

Figure 4.9: Trace of a single PCG iteration of the solve stage with unmerged and merged kernels
(top and bottom, respectively) on the Intel Xeon E5-2670, using 16 cores/threads and
a decomposition of the sparse matrix into a tree with 32 leaves, for the A200 problem.

91

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

DAG concurrency vs acceleration

As argued earlier, there is a trade-off between the computational cost of the preconditioner
computation/iterative PCG solve and the concurrency of these two stages, which is determined by
the number of levels/leaves of the task dependency trees and the cost of the individual tasks that are
involved in the sparse matrix-vector product and the construction/application of the preconditioner.
To illustrate this situation, we consider first the solution of the target linear system partitioned
into a DAG (tree) with a single leaf/level vs one with multiple levels, using a single core of the
Intel-based (int sandy) server in all cases. For example, the computation of the preconditioner for
the single-leaf DAG, using the sequential implementation of ILUPACK, required 137.07 seconds.
This time is reduced when the multi-level DAG/preconditioner is computed using only one core
and the associated DAG consists of up to 128 leaves (concretely, 123.27 and 136.33 seconds for
32 and 128 leaves, respectively), due to differences in the fill-in patterns between the single level
and multi-level cases; but the difference then grows to 172.61 seconds for 256 leaves, due to the
additional flops associated with the higher number of levels. For the iterative PCG solve, the multi-
level partitionings incur an increased computational cost as well as a higher number of iterations
(see next subsection). The outcome of these combined factors is that, on the int sandy server,
the PCG solve requires 193.17 seconds in the single-leaf DAG vs 200.10, 180.53 and 298.81 seconds
with 2, 32 and 128 leaves, respectively, when executed on a single core. The large increase in the
128-leaf DAG is also due to the additional flops required by the superior number of levels.

Figure 4.10 reports the speed-up of the parallel (data-flow) implementations of preconditioner
computation and PCG solve (per iteration) for the two platforms employed in the evaluation. The
acceleration rates were always computed with respect to the sequential legacy implementation of
ILUPACK, running with a a single thread/core. For the parallel implementation, in general the
best results are obtained when the number of leaves equals or doubles the number of threads/cores.
We emphasize that the speed-ups embed the increment in the computational cost that occurs when
the number of levels in the DAG is increased. Thus, for the int sandy server, the speed-ups vary
between 2.09/1.56 for 2 cores and 32/256 leaves; and 12.11/9.67 for 16 cores and 32/256 leaves for
the calculation of the preconditioner. (The superlinear speed-up in the execution with 2 cores/32
leaves can be due to a better utilization of the cache system or a smaller fill-in.) The values for the
iterative solve stage are similar: 2.31/0.95 for 2 cores and 16/256 leaves; and 9.44/4.80 for 16 cores
and 32/256 leaves. Slightly lower speed-ups were obtained for the amd platform.

DAG concurrency vs numerical properties of the solver

In order to assess the numerical behaviour of the preconditioner/PCG solver as a function
of the number of leaves/tasks (i.e., concurrency), we utilize the A-norm defined in [104], with the
estimator in [178], as a measure of the numerical accuracy of the approximate solution xj computed
at the j-th iteration: ‖x − xj‖A, where x stands for the correct solution. Figure 4.11 shows that,
for a fixed residual A-norm, there is a slight increase in the iteration count as the number of leaves
grows from 1 (sequential legacy implementation in ILUPACK) up to 256. For example, in order
to achieve a residual of order 1.0e–12, the sequential code requires 68 iterations, while this value
grows to 77, 79 and 85, for 2, 32 and 256 leaves, respectively. In any case, from the numerical point
of view, the parallel methods can still deliver the same level of accuracy (residual A-norm) as the
sequential implementation at the expense of a slight increase of the theoretical cost, which is more
than compensated in the parallel execution.

92

4.5. EXPLOITING TASK-PARALLELISM WITH MPI + OMPSS

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32 64 128 256

S
p

e
e
d

-u
p

Number of leaves

Speed-up of preconditioner computation on Intel Xeon E5-2670 platform

1 thread
2 threads
4 threads
8 threads

16 threads

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32 64 128 256

S
p

e
e
d

-u
p

Number of leaves

Speed-up of PCG solve on Intel Xeon E5-2670 platform

1 thread
2 threads
4 threads
8 threads

16 threads

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32 64 128 256

S
p

e
e
d

-u
p

Number of leaves

Speed-up of preconditioner computation on AMD Opteron 6276 platform

1 thread
2 threads
4 threads
8 threads

16 threads

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32 64 128 256

S
p

e
e
d

-u
p

Number of leaves

Speed-up of PCG solve on AMD Opteron 6276 platform

1 thread
2 threads
4 threads
8 threads

16 threads

Figure 4.10: Speed-ups attained with the data-flow ILUPACK method parallelized with OmpSs,
for the A200 problem. The left-hand side plots correspond to the computation of the
preconditioner and the right-hand side plots to the iterative PCG solve.

4.5 Exploiting Task-Parallelism with MPI + OmpSs

In this section we introduce a parallel implementation of the preconditioned iterative solver for
sparse linear systems underlying ILUPACK that explores the interoperability between the message-
passing MPI programming interface and the OmpSs task-parallel programming model [14]. Our
approach commences from the task dependency tree derived from a multi-level graph partitioning
of the problem, and statically maps the tasks in the top levels of this tree to the cluster nodes,
fixing the inter-node communication pattern. This mapping induces a conformal partitioning of the
tasks in the remaining levels of the tree among the nodes, which are then processed concurrently
via the OmpSs runtime system.

In Section 4.4, we exploited the task parallelism exposed by the DAG associated with the sparse
matrix to develop a parallel version of ILUPACK PCG solver for shared-memory multiprocessors
that relies on OmpSs [12, 13]. Moreover, a parallel version of ILUPACK for clusters using MPI
was developed in previous works [12, 23]. Unfortunately, the previous MPI version of ILUPACK

93

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 20 40 60 80 100 120

E
st

im
a
te

d
 |

|x
 -

x
j||

A

Iteration j

Convergence rate

1 Leaf
2 Leaves
4 Leaves
8 Leaves

16 Leaves
32 Leaves
64 Leaves

128 Leaves
256 Leaves

Figure 4.11: Error estimation via the A-norm and convergence rate for different number of leaves/-
tasks for the A200 problem.

could only map one leaf of the DAG to each MPI rank, impeding the exploitation of other types
of parallelism inside the nodes. This is a strong limitation for clusters consisting of “fat” nodes,
equipped with a significant numbers of cores per node, as the static correspondence between tasks
and MPI ranks may result in an unbalanced distribution of the workload and, therefore, be a source
of inefficiency.

We present a new implementation of ILUPACK which merges MPI and OmpSs to exploit the
benefits of each programming model, and allows the execution of the solver with more than one
leaf per MPI process. In addition, we perform an experimental evaluation in order to assess the
impact of the MPI+OmpSs configuration, problem dimension, and number of leaves per core on
the performance of the iterative solve. Our results on the marenostrum cluster, equipped with
16 Intel Xeon cores per node, reveals that the MPI+OmpSs version consistently outperforms the
initial MPI code in terms of both strong and weak scaling.

4.5.1 Task-Parallel implementation with MPI+OmpSs

In this subsection, we first briefly review how to exploit the task parallelism explicitly exposed
by the DAG, using either OmpSs or MPI, to then introduce our approach that combines both
parallel programming models to yield a task-parallel MPI+OmpSs solution.

Parallelization using OmpSs

The opportunities to exploit task parallelism in ILUPACK PCG method lie within the computa-
tions that involve the preconditioner (computation and application) as well as the vector operations,
as we have described previously in Section 4.4.

94

4.5. EXPLOITING TASK-PARALLELISM WITH MPI + OMPSS

Parallelization with MPI

The original MPI-based parallel version of ILUPACK, introduced in [23], spawns one MPI
rank per leaf (task) of the DAG, with a one-to-one static mapping between leaves and ranks.
This task-rank correspondence is fixed before the preconditioner computation, by the root process,
which sends the information for each leaf to the appropriate MPI rank. The same mapping is
then maintained during the complete execution, for all computations and iterations, including the
preconditioner computation/application and vector operations.

The operations with the preconditioner potentially transform the dependencies of the DAG
into communications among MPI ranks. To reduce the number of transfers, an inner task is always
mapped to one of the two MPI ranks where the two “children” tasks were mapped to. For example,
in a DAG consisting of 4 leaves mapped to 4 MPI ranks, R0-R3, in order to collapse the first level
when the graph is traversed bottom-up during the lower triangular system solve, ranks R0, R2 send
their data to R1, R3, respectively. The receivers then accumulate this information with the results
from their own computations, and process the tasks in the next higher level, while the senders block
till the top-down traversal of the TDG during the upper triangular system solve. Following this
strategy, traversing the DAG only requires a communication between “sibling” tasks/“neighbour”
MPI ranks.

Disassembling the matrix and the vectors, according to (4.6), allows all other computations
of PCG to operate with the leaves, avoiding any communication, except for the dot operations,
which require an MPI reduction (MPI Reduce) to accumulate the values computed in each node.

Combining MPI+OmpSs

In general, a strong motivation for mixing OmpSs with MPI is to unleash a higher level of
asynchronism, for example in order to overlap communication with computation. In this particular
work, the major advantage of combining both programming models is to exploit dynamic scheduling
within the cluster nodes via OmpSs.

The first step to obtain an MPI+OmpSs solution is to develop a new MPI version of ILUPACK
where a MPI rank can handle a subtree of the DAG comprising several leaves and the related inner
tasks. With this version, OmpSs can then be applied to process the tasks mapped to each MPI
rank, dynamically distributing the work between several OmpSs threads. For example, consider a
two-level DAG composed of one root task and two leaves to be executed on a processor with two
cores. If the computational cost associated with the leaves is unbalanced, this can be tackled by
expanding an additional level of the DAG, yielding a three-level tree with four leaves. Now, if the
parallelization is based on MPI only, an optimal mapping of the tasks to MPI ranks requires a prior
knowledge of the computational costs of the tasks. Compared with this, an OmpSs parallel version
with 2 threads features a dynamic mapping of tasks to threads that is more flexible and can exploit
the resources more efficiently by, e.g., prioritizing the execution of the costlier tasks.

The MPI+OmpSs version still requires an initialization where the root process distributes the
data corresponding to (the leaves of) the subtrees among the MPI ranks. The MPI+OmpSs version
of ILUPACK is then divided into a sequence of interleaved OmpSs and MPI stages, with the former
ones computing the tasks internal to the subtrees local to the MPI ranks by using OmpSs, and
the latter requiring communication between MPI ranks. In particular, the computation of the
preconditioner comprises only one stage of each type, but its application in the PCG has two
OmpSs stages per iteration because the DAG is traversed twice. Figure 4.12 illustrates the initial
distribution for a DAG with 8 leaves, together with a scheme of the execution of the two stages
in the preconditioner computation. In that example, the OmpSs threads process the tasks within

95

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

Figure 4.12: Mapping of a DAG to 4 MPI ranks (R0–R3) with 2 OmpSs threads per rank.

the bottom two levels, with no MPI communication involved. For the top two levels, the OmpSs
threads remain inactive and it is the MPI ranks that are in charge of processing the tasks. The
dot operations also exhibit the same two stages: On the leaves, the OmpSs threads accumulate
their local subvectors, and an atomic reduction is then applied to compute the reduction inside
each MPI rank. These local values are then reduced using an MPI collective primitive. The sparse
matrix-vector product and the remaining vector computations of the PCG iteration operate in the
bottom level only and, therefore, are computed by OmpSs threads with no MPI communication
involved.

4.5.2 Experimental results

In the following we analyze the performance of two parallel versions of the PCG solver in
ILUPACK: one based on MPI that can handle several leaves per MPI rank, with no intervention of
OmpSs (hereafter, referred to as MPI-only); and an alternative variant that combines MPI+OmpSs,
also capable of processing several leaves per MPI rank, but which does so via OmpSs threads
internally to each node. The MPI+OmpSs code was compiled using Mercurium C/C++ (1.99.8),
with the OpenMPI (1.8.1) flags -showme:compile and -showme:link. The MPI-only variant was
compiled with the same version of OpenMPI. Other software included OmpSs (15.06), ILUPACK
(2.4), and ParMetis (4.0.2) for the graph reorderings. In the executions with the MPI-only version,
we spawned one MPI rank per core (i.e., 16 per node); while for MPI+OmpSs, we tested distinct
combinations of MPI ranks and OmpSs threads, with the numbers of ranks multiplied by the
number of threads always being equal to 16 per node.

Hereafter, we consider the behaviour of the iterative PCG solver only, without the preconditioner
computation, because the computational cost of the latter is in general smaller and we observed
no significant performance differences between the MPI-only and MPI+OmpSs parallel versions of

96

4.5. EXPLOITING TASK-PARALLELISM WITH MPI + OMPSS

this procedure. In addition, several previous experiments revealed that the best performance was
obtained when splitting the sparse matrix via nested dissection to generate a DAG with a number
of leaves that equals or doubles the number of cores. Therefore, in the following we analyze only
these two cases.

Analysis of configurations

In order to assess the performance of the parallel MPI+OmpSs version of ILUPACK, we first
evaluate different combinations of MPI ranks and OmpSs threads per node (configurations). Given
the node target architecture, with 2 sockets/8 cores per socket, we employ 1, 2, 4, 8 or 16 MPI ranks
per node and the corresponding number OmpSs threads that fill all cores per node: 16, 8, 4, 2 or 1,
respectively. We will denote these configurations as 1R/16T, 2R/8T, 4T/4T, 8R/2T, and 16R/1T
(#Ranks/#Threads). Figure 4.13 reports the ratio of execution time of these configurations with
respect to the MPI-only implementation for the A400 problem, splitting the problem to obtain one
leaf per core and two leaves per core. Both graphs reveal that, for almost all cases, the best option
is 2R/8T, which mimics the internal socket/core architecture of the servers. Furthermore, we also
note that the extreme configurations, 1R/16T and 16R/1T, deliver the lowest performance. In the
case that employs 1 rank and 16 OmpSs threads, this is due to the intersocket communications.
In the alternative with 16 MPI ranks and 1 thread per rank the reason is the overhead introduced
by the OmpSs runtime system. In order to avoid this, when exploiting the hardware concurrency
using MPI ranks only, we will not employ the OmpSs runtime system in the following. Similar
results are shown in Figure 4.14 for two benchmarks of mygeo3 (see Figure 4.7), on which we only
split the problem to obtain two leaves per core.

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1 2 4 8 16

R
a
ti

o
 o

f
ti

m
e
 w

.r
.t

 M
P
I-

o
n
ly

Number of nodes

PCG solver on Laplace A400 problem with 1 leaf/core

1R/16T
2R/8T
4R/4T
8R/2T

16R/1T

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1 2 4 8 16

R
a
ti

o
 o

f
ti

m
e
 w

.r
.t

 M
P
I-

o
n
ly

Number of nodes

PCG solver on Laplace A400 problem with 2 leaves/core

1R/16T
2R/8T
4R/4T
8R/2T

16R/1T

Figure 4.13: Ratio of execution time per PCG iteration with respect to the MPI-only version for
the Laplace A400 problem for different configurations, using 1 leaf per core (left) and
2 leaves per core (right).

Analysis of scalability

We first evaluate the strong scalability of the parallel solvers. Figure 4.15 shows the execution
time per iteration of the PCG solve for the A400 problem as the resources are increased from 16
cores/1 node to 256 cores/16 nodes. In general, as expected, there is a decrease in the iteration
time as the number of cores grows. If we compare the two versions, the results demonstrate that
the MPI+OmpSs variant consistently outperforms the MPI version (with no underlying OmpSs
runtime system), by a margin that is around 5–10%. Moreover, there is a slight difference between

97

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1 2 4 8 16

R
a
ti

o
 o

f
ti

m
e
 w

.r
.t

 M
P
I-

o
n
ly

Number of nodes

PCG solver on mygeo3 F1 problem with 2 leaves/core

1R/16T
2R/8T
4R/4T
8R/2T

16R/1T

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1 2 4 8 16

R
a
ti

o
 o

f
ti

m
e
 w

.r
.t

 M
P
I-

o
n
ly

Number of nodes

PCG solver on mygeo3 VF1 problem with 2 leaves/core

1R/16T
2R/8T
4R/4T
8R/2T

16R/1T

Figure 4.14: Ratio of execution time per PCG iteration with respect to the MPI-only version for
two instances of mygeo3 problem for different configurations, using 2 leaves per core.

the cases with one or two leaves per core that is enlarged with the number of cores, revealing
the DAG with one leaf per core as the best choice for 32 or more cores. The reason is that, as
the amount of computational resources grows, the additional concurrency explicitly exposed by
further splitting the computational load (sparse matrix/adjacency graph) does not compensate the
overhead that is introduced for this particular (moderate) problem dimension.

0.0

0.5

1.0

1.5

2.0

2.5

16 32 64 128 256

T
im

e
 (

se
co

n
d

s)

Number of cores

Strong scalability. PCG solver on Laplace A400 problem

MPI+OmpSs. 1 leaf/core
MPI+OmpSs. 2 leaves/core

MPI. 1 leaf/core
MPI. 2 leaves/core

Figure 4.15: Execution time per PCG iteration for the Laplace A400 problem.

The next experiment aims to provide an evaluation of weak scaling for the parallel solvers.
Unfortunately, for ILUPACK PCG solve it is not possible to generate an instance of the Laplace
problem with a computational complexity that grows exactly in proportion to the number of re-
sources. To approximate this scenario, we set the size (n) and the number of non-zeros of the sparse
matrix (nz) to be roughly proportional to the number of cores. However, we emphasize that n and
nz only offer an estimation of the computational cost, as other factors such as the fill-in/quality of
the preconditioner play a relevant role. Figure 4.16 reports the performance of the parallel imple-
mentations of the PCG solve (per iteration) for different matrices in Table 4.1. These results show
that the execution times grow with the number of cores/problem dimension. The reason is that
the number of actual floating-point arithmetic operations per iteration increases faster than nz.
Comparing both implementations, the MPI+OmpSs version outperforms the MPI variant; and the
difference between the cases with one or two leaves per core also grows with the number of cores.

98

4.6. TUNING THE TASK-PARALLEL ILUPACK ON MANY-CORE ARCHITECTURES

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16/A159 32/A200 64/A252 128/A318 256/A400

T
im

e
 (

se
co

n
d

s)

Number of cores/Matrix

Weak scalability. PCG solver on Laplace problems

MPI+OmpSs. 1 leaf/core
MPI+OmpSs. 2 leaves/core

MPI. 1 leaf/core
MPI. 2 leaves/core

Figure 4.16: Execution time per PCG iteration for different Laplace problems.

4.6 Tuning the Task-Parallel ILUPACK on Many-core Architectures

In this section we present specialized implementations of the preconditioned iterative linear
system solver in ILUPACK for NUMA platforms and manycore hardware co-processors based on the
Intel Xeon Phi [12]. For the conventional x86 architectures, our approach exploits task parallelism
via the OmpSs runtime as well as a message-passing implementation based on MPI, respectively
yielding dynamic and static schedules of the work to the cores.

In particular, in the following we revisit our task-parallel versions of ILUPACK (described
previously in Sections 4.4 and 4.5), making the following new contributions:

• Our task-parallel implementations target a pair of “conventional” x86-based architectures
with large numbers of cores: an Intel Xeon Phi 60-core accelerator (xeon phi) and a NUMA
server with 4 AMD Opteron 6276 sockets totalling 64 cores (opteron).

• For the task-parallel version of ILUPACK based on OmpSs, we reformulate our previous im-
plementation to exploit nested parallelism in order to tackle the ample hardware concurrency
of the Intel- and AMD-based systems. In addition, we analyze the benefits of a “scattered”
mapping of the threads on the Intel Xeon Phi and we enhance the solver to produce a NUMA-
aware execution for the AMD server.

• Alternatively, on these two conventional platforms, we also explore the use of the MPI-based
implementation of ILUPACK to extract task parallelism and transparently deal with NUMA
effects. On the Intel Xeon Phi, we expose the similarities between the thread mapping strategy
and the MPI rank mapping policy in this case.

• Finally, we use a common reference application to experimentally evaluate these paralleliza-
tion alternatives (OmpSs or MPI combined with task parallelism), target platforms (AMD
x86 manycore server and Intel Xeon Phi accelerator), and numerical semantics (sequential vs
task-parallel) from the perspectives of performance, convergence rate, and numerical accuracy.

4.6.1 OmpSs implementations

We next describe the modifications implemented in the OmpSs version of ILUPACK solver
to efficiently execute in NUMA architectures and manycore accelerators. These optimizations

99

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

include the exploitation of nested parallelism, the correct mapping of threads to cores, and the
accommodation of a NUMA-aware execution.

Exploiting nested parallelism

The operations that appear in the iterative PCG solve (while loop in Figure 4.6) define a partial
order which enforces an almost strict serial execution. Specifically, at the (j + 1)-th iteration

. . .→ O9→
(j + 1)-th iteration

O1→ O2→ O3→ O5→ O6→ O7→ O8→ O9→ O1→ . . .

must be computed in that order, but O4 and O10 can be computed any time once O3 and O5 are
respectively available. Further concurrency can be exposed by dividing some of these operations
into subtasks, as described, for example, in subsection 4.1.3.

Handling the dependencies is easy at the task/subtask levels but rapidly becomes a burden for
the OmpSs runtime when the number of cores in the target architecture is large. This scenario asks
for a high number of (sub)tasks which, in ILUPACK, necessarily exhibit a small computational cost
except for the operations involving the leaf nodes of the preconditioner DAG. In subsection 4.4.2
we increased the granularity of the subtasks by modifying the code to merge three pairs (or trios)
of operations in the PCG solve into a single “group” of subtasks each [13]: O1+O2+O3, O4+O5
and O7+O10; see Figure 4.6. For example, the SpMV+dot in O1+O2+O3, applied to (4.6),
are combined by merging each one of the small matrix-vector products v̄i := Āiipj , i = 0, . . . ,3,
with the reduction of the corresponding elements of O2. Additionally, the ordered execution of the
groups was controlled by inserting explicit barriers (#pragma omp barrier) between each group of
subtasks: O1+O2+O3, 04+O5, O6, O7+O10, O8+O9.

In the new implementation, we eliminate the explicit barriers and instead rely on OmpSs to
elegantly deal with the nested parallelism exhibited by the task/subtask dependencies. Concretely,
the nested variant defines O1+O2+O3, O4+O5, O6, O7+O10, and O8+O9 as five coarse-grain
OmpSs tasks (via #pragma omp task) and off-loads the complete detection and control of the de-
pendencies to the OmpSs runtime. In addition, this version also divides these five macro-operations
into fine-grain subtasks, and merges pairs of them as described above. In order to illustrate this,
consider for example O1+O2, consisting of the SpMV vj := Apj and the dot αj := σj/p

T
j vj .

The code that performs this operation is annotated in Figure 4.17, where, for simplicity, we do not
illustrate how to deal with the reduction on αj (variable alpha).

Mapping threads to cores on the Intel Xeon Phi

The Intel Xeon Phi supports up to 4 hardware threads per physical core, while our task-parallel
approach spawns one OmpSs thread per leave in the preconditioner DAG. A critical aspect in this
platform is how to bind the OmpSs threads to the hardware threads/cores in order to distribute
the workload. The mapping is controlled using the NANOS [143] runtime environment variable
NX ARGS, passing the appropriate values via arguments --binding stride, --binding start and
--smp workers. Specifically, the first argument governs how many hardware threads are to be
skipped between the mapping of two consecutive OmpSs threads; the second identifies the starting
point (first hardware thread) for a strided round-robin mapping; and the third argument specifies
the total number of OmpSs threads. Thus, for example, by setting --binding stride=1 we
completely populate a core with 4 OmpSs threads before mapping threads to a new core. On the
other extreme, --binding stride=4 populates all cores with a single, two,. . . OmpSs thread(s)

100

4.6. TUNING THE TASK-PARALLEL ILUPACK ON MANY-CORE ARCHITECTURES

// SpMVDOT computes v j := A ∗ p j and alpha j := sigma j / (p jˆT ∗ v j)
// Coarse−grain task
#pragma omp task input (n, sigma , p[0:n-1]) output (v[0:n-1], alpha)

{

SpMV_DOT(int *n, double *sigma ,

double p[], double v[], double *alpha) {

// Init ia l i zat ion code . . .
for (id_task = 0; id_task < num_leaves_in_DAG; id_task ++) {

// Fine−grain (sub)task
#pragma omp task

{

SpMV_DOT_LEAF(int *task_id , int *n, double *sigma ,

double p[], double v[], double *alpha) {

// Merged SpMV and DOT operating with leaf task id . . .
}

}

}

// Termination code . . .
}

}

Figure 4.17: Example of code illustrating the nested parallelism implemented in ILUPACK.

before assigning a second, third,. . . thread to them. Figure 4.18 illustrates these two examples of
binding.

NUMA-aware execution on the AMD server

In order to attain high performance on the four-socket target AMD server, it is important
to accommodate a NUMA-aware execution. This is achieved in our implementation with the
NANOS environment variable NX ARGS and the argument --schedule=socket combined with a
careful modification of the ILUPACK code. Concretely, our code records in which socket each task
was executed during the initial calculation of the preconditioner. This information is subsequently
leveraged, during all iterations of the PCG solve, to enforce that tasks which operate on the same
data that was generated/accessed during the preconditioner calculation are mapped to the same
socket where they were originally executed. The fragment of code in Figure 4.19 illustrates how this
is achieved in the merged code for O1+O2. This strategy ensures that, during the PCG iteration,
a task is always executed on (any core of) the same socket that computed the corresponding task
during the computation of the preconditioner (recorded into array preconditioner socket) using
NANOS routine nanos current socket().

4.6.2 MPI implementations

For this particular work, we ported the task-parallel MPI implementation of ILUPACK de-
scribed in [23] to the Intel Xeon Phi accelerator and the AMD server. The MPI implementation
also exploits the task concurrency explicitly exposed by the preconditioner DAG during the cal-
culation of the preconditioner and the subsequent PCG iteration, but employs MPI ranks (i.e.,
processes) instead of the threads leveraged in the OmpSs version. A second major difference is
that, in the MPI implementation, the tasks are mapped to the MPI ranks a priori, that is, before
the execution commences. The execution with the MPI implementation is thus the result of a
static schedule (static mapping of tasks to MPI ranks) instead of a dynamic one as occurs with the
OmpSs implementation.

101

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

Figure 4.18: Examples of binding using different values of NANOS arguments.

for (id_task = 0; id_task < num_leaves_in_DAG; id_task ++) {

// Fine−grain (sub)task
socket = preconditioner_socket[task_id];

nanos_current_socket(socket);

#pragma omp task

{

SpMV_DOT_LEAF(int *task_id , int *n, double *sigma ,

double p[], double v[], double *alpha) {

// Merged SpMV and DOT operating with leaf task id . . .
}

}

}

Figure 4.19: Example of code implementing the NUMA-aware execution in ILUPACK.

102

4.6. TUNING THE TASK-PARALLEL ILUPACK ON MANY-CORE ARCHITECTURES

To distribute the MPI ranks among the processor cores of the Intel Xeon Phi, we include the
options:

-genv I_MPI_PIN_MODE=lib \

-genv I_MPI_PIN_PROCESSOR_LIST=\$mapping

in the mpirun invocation, with a list of cores in $mapping specifying the binding of ranks to cores.

To reduce inter-process communication, the original MPI implementation already ensures that
the same MPI rank executes the operations associated with the “same” tasks of the preconditioner
calculation and the PCG iteration. Note that we had to modify the OmpSs version manually to
enforce a similar behaviour at the socket level in the NUMA-aware implementation for the AMD
server.

4.6.3 Experimental results

We next evaluate the performance of different task-parallel implementations of ILUPACK, based
on MPI and OmpSs, on xeon phi and opteron (see Section 4.3). For xeon phi the compiler
and MPI implementation are part of Intel icc 13.1.3 20130607 (Intel MPI Library for Linux* OS,
Version 4.1 Update 1 Build 20130507); and for opteron the compiler is Intel icc 11.1 20100806
and the MPI implementation is OpenMPI 1.6. Moreover, the software employed in the experiments
included ILUPACK (2.4); the Mercurium C/C++ compiler/Nanox (releases 1.99.6/0.9a for xeon
phi and 1.99.1/0.8a for opteron) with support for OmpSs; and Metis (4.0.01) and ParMetis
(4.0.2) for the graph reorderings with the OmpSs and MPI implementations respectively. For each
platform, we employ the largest Laplace problem size that fits into its main memory (see Table 4.1).

The experiments report the speed-up compared with the sequential implementation of ILU-
PACK, running on the corresponding platform (a single core of xeon phi or opteron). Therefore,
the results show the execution time of the parallel solver normalized with respect to that of the
sequential version. In order to expose enough task concurrency, for the task-parallel cases we par-
tition the matrix into DAGs with one leaf per worker (either an OmpSs thread or an MPI rank),
while the sequential version “solves” a DAG/matrix with a single task. We emphasize that the
semantics of the task-parallel version differ with the number of leaves (hereafter l) in the precondi-
tioner DAG, and they are also different from the sequential semantics. However, we ensure that the
solvers are comparable by stopping the iteration process when the same residual, of order restol,
is attained.

On xeon phi, the number of physical cores that are actually used in the task-parallel executions,
denoted by c, depends on the number of workers w that are spawned, between 1 and 32, and how
many workers are mapped per core, wc=1, 2 or 4 (inverse of the binding-stride factor): c = w/wc;
see Table 4.3. On opteron, the number of cores is simply given by c = w, as one worker is mapped
at most per core; see Table 4.3. On both platforms, w = l.

Table 4.4 reports the speed-ups attained by the OmpSs and MPI implementations of ILUPACK
in xeon phi for the benchmark A171 (see Table 4.1). (Similar results were obtained for the smaller
test cases A126 and A159.) The data comprised there reveals the following trends along different
dimensions:

• Iso-workers and Iso-DAGs (same w or column of the table). Fixing the number of workers
while we increase the level of “saturation” of the cores (i.e., raise wc) has a clear negative
effect on the OmpSs implementation and a slightly smaller one on the MPI one, for both the
preconditioner computation and the PCG solve.

103

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

#Workers w,l= 1 2 4 8 16 32 64

xeon phi
wc=1 1 2 4 8 16 32 - -
wc=2 1 1 2 4 8 16 - -
wc=4 1 1 1 2 4 8 - -

opteron 1 2 4 8 16 32 64

Table 4.3: Number of cores (c) for the experimental evaluation on xeon phi and opteron. The
cases with 64 workers were not evaluated on xeon phi due to lack of enough memory
for the MPI implementations.

OmpSs MPI

#Workers w,l= 2 4 8 16 32 2 4 8 16 32

wc=1 1.9 3.8 7.5 12.8 22.4 2.0 3.9 7.3 13.3 23.2
Precond. wc=2 1.4 2.9 5.5 9.8 16.9 1.4 2.9 5.7 10.6 18.3

wc=4 1.4 1.7 3.3 5.9 10.5 1.4 1.6 3.3 6.3 11.6

wc=1 1.9 3.9 8.0 15.5 27.7 2.0 3.9 7.6 13.4 22.6
PCG solve wc=2 1.5 3.1 6.2 11.9 18.0 1.6 3.1 5.9 10.9 19.4

wc=4 1.5 1.8 3.5 5.0 4.1? 1.6 1.5 2.8 5.1 11.4

Table 4.4: Speed-ups of the task-parallel OmpSs and MPI implementations of the preconditioner
computation and PCG solve in xeon phi for matrix A171.

• Iso-saturation (same wc or row of the table). Keeping constant the saturation, while increas-
ing the number of workers w, implies a growth also in the number of physical cores (hardware
resources) and, as could be expected, an increase of performance (except for one case in the
OmpSs implementation of the PCG solve, marked with the superscript “?”).

• Iso-cores (same c, cell color or diagonal of the table). Fixing the number of cores to solve
a problem, as the number of workers w grows, involves a proportional increase of the level
of saturation of the cores. In other words, we maintain a constant volume of cores, while
we increase the amount of workers and, simultaneously, the saturation of these hardware
resources. This has a positive effect on both the OmpSs and MPI implementations of the
preconditioner computation as well as the MPI implementations of the PCG solve. When
the saturation level is wc=4, the OmpSs implementation of the PCG solve suffers from the
increase to 32 workers.

• Overall performance of OmpSs vs MPI. In general, when the number of cores/workers is
small, appear slight performance differences in favor of the MPI implementation for the
preconditioner computation and the OmpSs implementation for the PCG solve. On the other
hand, as these values increase, OmpSs becomes the overall winner for the PCG solve while
both implementations offer close performance for the preconditioner computation.

Table 4.5 shows the speed-ups attained by the OmpSs and MPI implementations of ILUPACK in
opteron. The number of parameters is now more reduced, which leads to a simpler analysis. First,
the NUMA-aware OmpSs implementation of the PCG solve clearly outperforms its NUMA-oblivious
counterpart, with the difference rapidly growing with the number of threads (and therefore cores).
Also, as expected, increasing the number of workers yields higher speed-ups, as more resources
are employed in the solution of the problem. We note here that this result demonstrates that

104

4.7. CONCLUDING REMARKS

OmpSs MPI
#Workers w,l= 2 4 8 16 32 64 2 4 8 16 32 64

Precond. 2.0 4.0 6.3 10.5 14.5 22.9 2.0 3.9 7.3 12.8 19.5 23.9

PCG solve
NO 1.9 3.9 6.1 8.6 6.9 10.2 - - - - - - - - - - - -
NA 2.2 5.1 8.2 13.4 14.7 27.2 2.3 4.1 8.2 13.1 21.3 17.2

Table 4.5: Speed-ups of the task-parallel OmpSs and MPI implementations of the preconditioner
computation and PCG solve in opteron for matrix A318. NO and NA denote re-
spectively the NUMA-oblivious and NUMA-aware implementations of the PCG solve.

the computational overhead intrinsic to partitioning the matrix into a DAG consisting of more
tasks is compensated by a superior level of task concurrency to be exploited by a larger number
of workers/cores. Finally, the OmpSs and MPI implementations deliver similar performance in the
preconditioner computation when the number of cores is large, but OmpSs attains a much higher
speed-up for the PCG solve when 64 workers are employed.

Comparison of the solvers

We finally evaluate the numerical behaviour of the task-parallel solvers, using a common matrix
case (A171). For this purpose, we leverage the A-norm defined in [104], with the estimator in [178],
as a measure of the numerical accuracy of the approximate solution xj computed at the j-th iteration
of the PCG solve: ‖x− xj‖A, where x stands for the correct solution to the linear system. For the
task-parallel solvers, we use 32 workers/cores of xeon phi and 64 on opteron.

Figure 4.20 relates the estimated residual of the solutions computed by the parallel solvers to
the execution time. These results show that the numerical behaviour of the task-parallel imple-
mentations based on OmpSs and MPI is almost identical, which could be expected as they operate
on DAGs with the same number of leaves. The small differences are due to the use of different
versions of the Metis graph partitioning package to decompose the problem into tasks. The time
difference between xeon phi and opteron is explained by the use of 64 cores at 2.1 GHz in the
latter vs only half of that number of cores, at about half the frequency as well (1,053 MHz), in the
former.

4.7 Concluding Remarks

In this chapter we have analyzed the parallelization of the PCG method implemented as part of
the ILUPACK software for the solution of large-scale sparse linear systems. A careful reorganization
of the coefficient matrix of the system, using e.g. a graph partitioning tool like Metis or Scotch,
exposes enough coarse-grain task parallelism for todays’ multi-threaded processors. The approach
extracts task parallelism by splitting the sparse matrix into multiple levels, yielding a directed
acyclic graph, with the form of a binary tree, where the nodes represent tasks, the arrows indicate
data dependencies, and most computational work is performed in the leaf tasks. This graph is
then traversed from bottom-up for the computation of the preconditioner and one of the triangular
solves during its application, and top-down for the second triangular solve. Simultaneously, this
partitioning can be leveraged to automatically implement different versions of this solver for shared-
memory and distributed-memory architectures. A key advantage of the approach designed in this

105

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

Time (s)
0 10 20 30 40

E
st

im
at

ed
 ||

x-
x j|| A

10-15

10-10

10-5

100

105

1010

OPTERON

XEON PHI

Convergence rate

OmpSs+XEON PHI
MPI+XEON PHI
OmpSs+OPTERON
MPI+OPTERON

Time (s)
0 20 40 60

E
st

im
at

ed
 ||

x-
x j|| A

10-15

10-10

10-5

100

105

1010

OPTERON

XEON PHI

Convergence rate

OmpSs+XEON PHI
MPI+XEON PHI
OmpSs+OPTERON
MPI+OPTERON

Figure 4.20: Convergence speed of the task- and data-parallel solvers for matrices A126 (left) and
A171 (right).

dissertation is that the parallelization scheme can be easily applied to other ILU-type iterative
solvers.

For shared-memory we employ the OmpSs programming model to facilitate the use of a “skele-
ton” structure that captures the tree-like dependencies of the subsequent preconditioner computa-
tion and triangular solves involved in the preconditioner application. This strategy requires minor
changes to the legacy code in ILUPACK, while allowing to pass the dependency information to
OmpSs which then orchestrates a concurrent execution of the complete PCG method, including
the sparse matrix-vector product, vector (BLAS-1) operations and, especially, the computations
involving the preconditioner. The results on two platforms equipped with state-of-the-art multicore
processors, using a large-scale linear system, report notable performance for the parallel solvers.
One relevant property of the new parallel data-flow solver is that the numerical method/software
is decoupled from the runtime.

In addition, we have presented a new parallel implementation of ILUPACK on clusters of
multicore processors, combining MPI and OmpSs models. The task parallelism in this version is
extracted in the same manner, and the tree can be expanded into further levels to expose any number
of tasks and, therefore, degree of concurrency. However, doing so yields different preconditioners
and, from a certain depth, produces a significant overhead. In general, the best compromise is to
generate up to two leaves per core, to allow the OmpSs scheduler optimize the computation. The
experimental results confirm this assert for configurations with a reduced number of nodes, where
the overhead is compensated by the OmpSs optimization. For unstructured matrices, the OmpSs
runtime system accelerates the computation in most scenarios, due to the irregularity of the node
sizes. The best solution combining MPI and OmpSs corresponds to a configuration that maps one
MPI rank and eight OmpSs threads per socket, mimicking the internal architecture of the cluster
nodes. With these parameters, the new MPI+OmpSs version of ILUPACK outperforms the initial
implementation for clusters, which was based on MPI and could only process one leaf per rank.

Finally, we have presented two parallel implementations of ILUPACK, based on the OmpSs
runtime and the MPI message-passing library to exploit task parallelism on x86 manycore archi-
tectures. Compared with our previous work using this library, our OmpSs-based implementations
employ nested parallelism to tackle task dependencies (instead of explicit barriers) at execution

106

4.7. CONCLUDING REMARKS

time, and introduce an architecture-aware implementation of the PCG solve for NUMA systems.
Our experimental results on these manycore platforms (an Intel Xeon Phi accelerator and a 64-core
AMD NUMA server) reveal that there exists ample task concurrency in the preconditioned solver
embedded into ILUPACK, showing notable speed-ups in these architectures. The direct comparison
between our parallel implementations also exposes that, while they all can achieve similar residuals
in the computed solution, from the point of view of performance, the best option is to employ the
MPI or OmpSs versions on the AMD server.

107

CHAPTER 4. EXPLOITING TASK-PARALLELISM IN ILUPACK

108

CHAPTER 5

Characterization of Processor Architectures with ILUPACK PCG

In the introduction to this manuscript, we motivated the ubiquity of sparse linear systems in
scientific computing in general, and numerical simulations as well as data analytics applications
in particular. In addition, the solution of sparse linear systems via iterative methods has been
recently argued to be representative of the actual performance that is experienced by a large fraction
of the scientific and engineering codes running on current supercomputers. This has led to the
introduction of the High Performance Conjugate Gradient (HPCG) benchmark1 as a complement
and, eventually, potential replacement for the traditional LINPACK benchmark that ranks modern
supercomputers twice per year in the Top500 and Green500 lists [7, 5]. Compared with LINPACK,
the HPCG benchmark is designed to exercise computational and data access patterns that match a
broad set of important applications more closely. Looking under the cover, the HPCG benchmark
is nothing but the CG method in disguise, enhanced with a simple local symmetric Gauss-Seidel
smoother (preconditioner).

In this chapter we investigate the efficiency of state-of-the-art multicore processors using our
multi-threaded implementations of the CG method accelerated with the task-parallel version of
ILUPACK described in Chapter 4. Concretely, we analyze multicore architectures with very distinct
designs and market targets to compare their parallel performance and energy efficiency using our
own benchmark. After this brief introduction, the rest of the chapter is structured as follows. In
Section 5.1 we present the architectures included in the study. In Sections 5.2 and 5.3 we elaborate
the study in detail for two of the multicore processors. Finally, in Section 5.4 we present some
general observations that summarize the insights gained from this analysis.

5.1 Target Multicore Architectures

For the study, we selected three different types of multicore architectures comprising two general-
purpose processors from Intel, two low-power systems from ARM, and the Intel Xeon Phi. This
collection is representative of todays’ multicore technology (except for GPUs, which are out-of-scope
for this dissertation).

1http://www.hpcg-benchmark.org/

109

http://www.hpcg-benchmark.org/

CHAPTER 5. CHARACTERIZATION OF PROCESSOR ARCHITECTURES WITH ILUPACK PCG

Figure 5.1: sandy architecture. The original image is extracted from [3].

5.1.1 Intel Xeon E5-2620 (sandy)

This server is equipped with two Intel Xeon E5-2620 (6-core) processors (from Q1’2012) and 32
Gbytes of DDR3 RAM, comprising a total of 12 cores distributed in two sockets (see Figure 5.1).
The memory hierarchy is organized into 32+32 Kbytes of private L1 cache (data+instructions) per
core, 2 Mbytes of private L2 cache per core, and 15 Mbytes of L3 cache shared by all cores in the
same socket. The nominal frequency of the cores can be varied between 1.2 GHz and 2.0 GHz
(2.5 GHz in Turbo mode), but all the cores in the same socket must operate at the same frequency.

In the sandy platform the energy measurements were obtained by directly reading the RAPL
registers from the code, as shown in Figure 2.10. RAPL defines several power planes to obtain real
and estimated energy consumption values for distinct components. For sandy, these include the
cores (real consumption) and memory (modelled consumption), among others.

5.1.2 ARMv7 Cortex-A15 (A15)

The ODROID-XU3 board is furnished with a Samsung Exynos 5422 system-on-chip (SoC).
This processor comprises an ARM Cortex-A15 quad-core cluster plus an ARM Cortex-A7 quad-
core cluster, both implementing the ARMv7a microarchitecture. Each Cortex core has its own
private 32-Kbyte L1 (data) cache. The four ARM Cortex-A15 cores share a 2-Mbyte L2 cache
and the four ARM Cortex-A7 cores share a smaller 512-Kbyte L2 cache. In addition, the two
clusters access a 2-Gbyte DDR3 RAM (see Figure 5.2). The frequency can be varied in the range
200 MHz–1.4 GHz for the Cortex-A7 cluster and 200 MHz–2.0 GHz for the Cortex-A15 cluster,
with a 100 MHz-step in both cases. However, in order to reduce the number of experiments,
we will perform our experiments with frequencies separated by 200 MHz. This then fixes the
corresponding (supply) voltage as shown in the corresponding columns of Table 5.1. Note that the
voltage remains constant in the frequency ranges [200,600] MHz for the Cortex-A15 [85]. All cores
in the same cluster must operate at the same frequency.

For the odroid board, the PMLib monitoring tool [25] collects power consumption correspond-
ing to instantaneous power readings from four independent sensors/power domains in the board
(Cortex-A7 cluster, Cortex-A15 cluster, DRAM and GPU), with a sampling rate of 250 ms. When
evaluating the energy of one of the clusters, we only consider the sensor corresponding to that
component. Given that we do not employ the GPU in our experiments, and that the four Cortex-
A15 cores and up to three Cortex-A7 cores can be disabled when idle, we can expect a negligible
power consumption for these components when inactive [85]. Specifically, in the experiments in
this chapter we only employ the four Cortex-A15 cores.

110

5.1. TARGET MULTICORE ARCHITECTURES

Figure 5.2: ODROID-XU3 architecture.

Figure 5.3: Juno architecture.

5.1.3 ARM Cortex-A57 (A57)

The JUNO development platform features an ARM Cortex-A57 dual-core cluster plus an ARM
Cortex-A53 quad-core cluster, both implementing the ARMv8 microarchitecture. Each core has its
own private 32-Kbyte L1 (data) cache. The two ARM Cortex-A57 cores share a 2-Mbyte L2 cache
and the four ARM Cortex-A53 cores share a smaller 1-Mbyte L2 cache. Both clusters are connected
to a DDR3 RAM with a capacity of 8 Gbytes (see Figure 5.3). The frequency and voltage can be
varied as displayed in the corresponding columns of Table 5.1. All cores in the same cluster must
operate at the same frequency.

In the juno board PMLib collects power consumption data corresponding to instantaneous
power readings using a data acquisition device from National Instruments connected to the internal
shunt resistors available in the board (Cortex-A53 cluster, Cortex-A57 cluster, system, and GPU),
with a sampling frequency of 100 Hz. When evaluating the energy of one of the clusters, we only
consider the line corresponding to that component, for the same reasons exposed for odroid. In
this platform, we only use the Cortex-A57 for the experiments.

5.1.4 Intel Xeon E5-2603v3 (haswell)

This server is equipped with two Intel Xeon E5-2603 (6-core) processors (from Q3’2014) and 32
Gbytes of DDR3 RAM, comprising a total of 12 cores distributed in two sockets (see Figure 5.4).
The memory hierarchy is organized into (192+192) Kbytes of private L1 cache (data+instructions)
per core, 2 Mbytes of private L2 cache per core, and 15 Mbytes of L3 cache shared by all cores in
the same socket. The nominal frequency of the cores can be varied between 1.2 GHz and 1.6 GHz.

In the haswell platform the energy measurements were obtained by directly reading the RAPL
registers from the code, as in sandy.

111

CHAPTER 5. CHARACTERIZATION OF PROCESSOR ARCHITECTURES WITH ILUPACK PCG

Figure 5.4: haswell architecture. The original image is extracted from [1].

Figure 5.5: xeon phi architecture. The original image is extracted from [4].

5.1.5 Intel Xeon Phi (xeon phi)

This board is equipped with an Intel Xeon Phi 5110P co-processor (the tests on this board were
ran in native mode and, therefore, the specifications of the server are irrelevant.) The accelerator
comprises 60 x86 cores running at 1.053 GHz and 8 Gbytes of GDDR5 RAM (see Figure 5.5). In
the co-processor we cannot change the frequency of the cores. The top of the memory hierarchy is
formed by the coprocessor cores and the vector registers. Each core supports 4 execution contexts
or threads and each thread has its own 32 vector registers. To facilitate low-latency, the L1 cache
is directly integrated into the core. The L1 data and instruction caches are the second level in the
coprocessor’s memory hierarchy. The L1 cache holds 32 Kbytes of data and has a 3-cycle access
time. The next level is the coprocessor core’s local L2 cache, and the L2 caches of all the cores
interconnected via the ring interconnect. Each core’s local L2 cache has the capacity of 512 Kbytes,
and with the processor interconnect, the total available is 30 Mbytes.

In the xeon phi board PMLib collects power consumption data corresponding to instantaneous
power readings using the MIC module implemented reading the libmicmgmt library, as shown in
Figure 2.13. The sampling frequency is 100 Hz.

5.1.6 General setup

Table 5.2 offers some further information about hardware in each platform. The software
configurations employed in the platforms are described in Table 5.3. Moreover, to facilitate an
easier understanding of the energy/power analyses in the next sections, Table 5.4 provides the
power consumed when all threads are idle for each architecture and range of frequencies.

112

5.2. CHARACTERIZATION OF SANDY USING ILUPACK PCG

sandy odroid (A15) juno (A57) haswell xeon phi

Conf. Freq. Freq. Voltage Freq. Voltage Freq. Freq.

C1 1.200 0.200 0.912 0.450 0.810 1.200 1.053 GHz
C2 1.300 0.400 0.912 0.625 0.850 1.300 –
C3 1.400 0.600 0.912 0.800 0.900 1.400 –
C4 1.500 0.800 0.925 0.950 0.950 1.500 –
C5 1.600 1.000 0.973 1.100 1.000 1.600 –
C6 1.700 1.200 1.023 – – – –
C7 1.800 1.400 1.062 – – – –
C8 1.900 1.600 1.115 – – – –
C9 2.000 1.800 1.191 – – – –
C10 – 2.000 1.318 – – – –

Table 5.1: VFS configurations (voltage-frequency pairs, in V and GHz, respectively) available in
the platforms.

Architecture sandy odroid(A15) juno(A57) haswell xeon phi

Procesor number E5-2620 ARMv7 rev 3 (v7l) AArch64 rev 0 E5-2603 V3 5110P

#Sockets 2 1 1 2 1

#Cores 12 4 2 12 60

Base Frequency 2.0 GHz 2.0 GHz 1.1 GHZ 1.6 GHz 1.053

Cache 15 MB 2 MB 2 MB 15 MB 30 MB

TDP 95 W 15 W 30 W 85 W 225 W

Voltage Range 0.60 V-1.35 V 0.91 V-1.32 V 0.81 V-1.00 V 0.65 V-1.30 V –

Memory 32 GB 2 GB 8 GB 32 GB 8 GB

Max. Memory Bandwidth 42.6 GB/s 14.9 GB/s 13.2 GB/s 51 GB/s 320 GB/s

Table 5.2: Hardware specifications of the platforms.

All the experiments in next sections employed ieee754 real double-precision arithmetic and the
Laplacian matrices described in Section 4.3. The problem size is the largest that fits in the main
memory of each platform.

5.2 Characterization of sandy using ILUPACK PCG

We will employ the general-purpose architecture sandy as a workhorse to guide through the
study performed for each architecture included in this chapter. The complete evaluation comprises
three “dimensions”, two of them architectural (number of cores/threads and operation frequency)
and one corresponding to the software (number of leaves for ILUPACK’s preconditioner task depen-
dency tree). Due to the large number of tests and results that were obtained for some architectures,
we organize the presentation of the performance analysis of the architecture into the following se-
quence of steps:

1. Evaluation of the parallel ILUPACK PCG solver for a range of representative frequencies and
number of threads (thread-level parallelism), using 1, 2, 4,. . . , 64 leaves.

2. Selection of the optimal number of leaves for each level of thread-parallelism.

3. Evaluation of the impact of frequency on the ILUPACK PCG solver.

113

CHAPTER 5. CHARACTERIZATION OF PROCESSOR ARCHITECTURES WITH ILUPACK PCG

Architecture sandy odroid (A15) juno (A57) haswell xeon phi

gcc 4.4.6 4.8.2 4.9.1 4.4.7 5.1.0

ompss 16.06 16.06.1 16.06.1 16.06.1 16.06

mercurium 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0

nanox 0.12a 0.10.1 0.10.1 0.10.1 0.12a

metis 5.0.2 5.0.2 5.0.2 5.0.2 5.0.2

Power/energy measurements RAPL PMLib PMLib RAPL PMLib

Frequency changes CPUfreq CPUfreq CPUfreq CPUfreq –

Table 5.3: Software specifications of the platforms.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

sandy 80.92 81.64 82.14 82.73 83.29 84.04 84.63 85.31 86.00 –

odroid 0.08 0.10 0.13 0.17 0.20 0.25 0.31 0.42 0.52 0.74

juno 0.052 0.061 0.062 0.074 0.075 – – – – –

haswell 27.04 27.09 27.13 27.31 27.42 – – – – –

xeon phi 98.25 – – – – – – – – –

Table 5.4: Idle power (W) on the different platforms for the range of available frequency configu-
rations (described in Table 5.1).

4. Selection of the optimal frequency for each number of threads.

5. Evaluation of the impact of the thread-level parallelism on the ILUPACK PCG solver.

This analysis is then repeated from the perspective of energy efficiency, taking as a basis the
performance evaluation to justify some of the results for this second metric.

5.2.1 Performance

Number of leaves Let us commence the performance evaluation of sandy. Following the sequenc-
ing of steps aforementioned, Table 5.5 reports the execution time for all possible combinations of
tests determined by the three evaluation dimensions, using the matrix case A318 (the largest prob-
lem that fits into the 32 Gbytes available in sandy). A careful inspection of these results reveals
that a TDG consisting of 32 leaves in general offers the best performance, independently of the
number of threads (rows marked as optimal, in green tick). This is an interesting insight because
it provides experimental evidence that the cost overhead incurred when increasing the number of
leaves in the TDG is compensated by the superior parallelism that is exposed in that case. There-
fore, we will use 32 leaves in the remainder of our performance evaluation of this architecture.

Frequency To continue the performance evaluation, Figure 5.6 shows the evolution of the execu-
tion time when we tune the processor frequency for the different number of threads. To facilitate
the visualization of the results in the graph, for this experiment the execution time is normalized
with respect to that obtained using the lowest frequency for each number of threads. As could
be expected, all cost lines show that the time decreases as the frequency is raised, because higher
frequency intuitively translates into faster executions, but the decrement of the execution time is
more visible when the number of threads is small. In any case, as a general rule, the best option
to maximize performance in sandy is to set the architecture to operate at the highest nominal

114

5.2. CHARACTERIZATION OF SANDY USING ILUPACK PCG

Frequency (GHz)
Threads Leaves 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 Optimal

1 1 2,101.97 2,172.92 2,247.31 2,399.66 2,500.093 2,616.54 2,748.52 2,904.07 3089.21

1 2 2,258.14 2,334.60 2,416.46 2,579.21 2,690.58 2,817.22 2,960.86 3,131.67 3,334.14

1 4 2,206.33 2,282.08 2,361.39 2,521.12 2,630.13 2,754.85 2,899.63 3,064.04 3,264.76

1 8 2,059.72 2,134.89 2,214.53 2,362.19 2,469.52 2,592.35 2,732.59 2,896.50 3,093.48

1 16 2,032.03 2,111.61 2,195.80 2,335.55 2,448.015 2,576.99 2,723.51 2,895.42 3,099.69

1 32 1,874.28 1,956.64 2,045.67 2,171.66 2,281.49 2,413.99 2,565.14 2,748.27 2,948.78 X
1 64 1,984.17 2,071.40 2,167.50 2,295.86 2,418.43 2,560.25 2,720.38 2,908.628 3,129.69

2 2 1,187.16 1,226.14 1,266.71 1,347.14 1,402.86 1,465.96 1,538.28 1,622.12 1,727.68

2 4 1,165.28 1,202.96 1,244.12 1,324.94 1,382.15 1,444.90 1,517.23 1,602.96 1,706.14

2 8 1,120.19 1,157.68 1,200.03 1,274.26 1,329.30 1,392.17 1,463.57 1,547.69 1,647.65

2 16 1,107.12 1,145.65 1,188.75 1,261.74 1,318.63 1,383.81 1,459.23 1,546.18 1,653.14

2 32 982.27 1,024.26 1,072.63 1,136.34 1,198.03 1,260.39 1,340.92 1,432.75 1,534.23 X
2 64 1,047.51 1,091.60 1,146.10 1,212.33 1,274.25 1,345.67 1,422.87 1,521.74 1,631.68

4 4 684.14 703.03 723.20 761.23 789.39 821.27 858.42 902.08 956.58

4 8 648.01 668.08 690.99 725.57 752.98 786.75 823.42 868.47 920.28

4 16 663.73 682.94 704.83 742.80 770.16 802.86 839.25 883.72 940.01

4 32 545.73 569.35 591.83 628.01 657.54 688.49 727.68 780.62 837.15 X
4 64 599.63 613.37 646.00 675.77 711.52 749.25 787.32 836.40 895.87

6 8 691.88 710.49 730.62 766.18 794.15 825.38 862.83 906.51 959.29

6 16 574.98 592.59 608.78 636.01 659.23 685.20 714.13 749.82 793.46

6 32 438.45 457.28 476.77 502.71 529.13 549.61 578.23 626.58 659.70 X
6 64 1631.68 499.14 514.20 535.51 551.40 584.92 611.30 644.98 691.00

8 8 429.91 436.52 450.47 467.32 482.03 499.61 517.58 539.99 570.55

8 16 409.90 428.64 439.63 453.47 475.24 492.00 513.11 536.69 567.34

8 32 315.08 327.98 340.23 354.52 376.23 383.55 412.28 433.78 461.25 X
8 64 337.87 347.93 362.25 379.06 395.51 415.95 441.87 465.72 498.70

10 16 356.22 367.72 377.67 393.99 412.71 426.33 443.69 465.63 494.31

10 32 283.21 296.94 301.42 309.30 321.47 339.48 354.63 373.10 398.70 X
10 64 285.26 291.70 299.51 311.34 325.44 334.62 352.692 376.47 403.20

12 16 306.34 312.72 322.95 336.53 348.70 364.45 383.77 407.10 436.56

12 32 242.98 249.83 260.88 266.60 273.20 286.65 297.50 310.92 326.34 X
12 64 253.90 255.22 267.46 272.832 281.20 291.99 297.32 313.72 337.47

Table 5.5: Execution time (s) of the PCG solver on sandy using different number of threads and
leaves for the range of available frequencies.

115

CHAPTER 5. CHARACTERIZATION OF PROCESSOR ARCHITECTURES WITH ILUPACK PCG

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

N
o
rm

a
liz

e
d
 T

im
e
 w

.r
.t

 1
.2

 G
H

z

Frequency

Normalized Time vs. Frequency

Threads=1
Threads=2
Threads=4
Threads=6
Threads=8

Threads=10
Threads=12

Figure 5.6: Performance vs. frequency of the PCG solver in sandy using a TDG with 32 leaves.
The execution time is normalized with respect to that obtained with the lowest fre-
quency for each number of threads.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

1 2 4 6 8 10 12

T
im

e
 (

s)

Threads

Time vs. Scalability

Figure 5.7: Performance vs. scalability of the PCG solver in sandy using a TDG with 32 leaves.
The experiments were run at the maximum frequency (2.0 GHz) for each number of
threads.

frequency, corresponding to 2.0 GHz. This is the reference value that we will use in our third ex-
periment with this platform. (Here we note that the highest possible frequency for this architecture
is 2.5 GHz, when operating in Turbo mode. However, this frequency can only be maintained for a
short period and/or a reduced number of active cores.)

Thread-level parallelism The final step of the performance study assesses the thread-level scal-
ability of sandy using the ILUPACK PCG solver. For this, Figure 5.7 shows the execution time
as the number of threads increases from 1 to 12. The speed-up is fair till 8 threads, but stagnates
as more threads from the second socket are added. This final result will be re-visited again during
the assessment of the energy consumption, to justify some of the observations for that metric.

5.2.2 Energy consumption

Number of leaves We open the study concerning the energy efficiency of sandy, using the ILU-
PACK PCG solver, by first reporting the consumption for all the combinations of the three dimen-
sions: number of leaves, frequency and thread-parallelism. Table 5.6 indicates that the best number
of leaves, among the five tested values (1, 2, 4,. . . , 64), corresponds to 32. This matches the optimal
number of leaves from the point of view of the execution time and is not totally unexpected. The
reason is that the energy consumption depends on the execution time so that, improving the latter

116

5.2. CHARACTERIZATION OF SANDY USING ILUPACK PCG

Frequency (GHz)
Threads Leaves 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 Optimal

1 1 202.57 206.18 208.18 222.17 225.47 230.71 239.25 249.71 265.62

1 2 216.31 219.94 224.29 237.50 242.52 249.11 256.85 269.77 281.36

1 4 212.62 212.45 219.14 231.85 238.47 248.31 253.20 261.97 278.41

1 8 197.10 201.08 205.16 216.95 222.48 233.31 241.02 252.27 263.55

1 16 195.74 200.05 200.46 214.89 220.40 232.20 240.58 251.22 262.83

1 32 180.73 185.26 188.42 200.95 205.40 217.09 226.21 239.60 251.47 X
1 64 190.99 197.28 200.96 211.16 217.73 227.53 233.81 251.20 265.92

2 2 122.59 124.78 126.03 131.61 134.99 138.77 144.33 149.15 156.29

2 4 119.96 120.69 123.46 129.07 132.70 136.23 138.415 146.88 152.80

2 8 116.03 117.71 119.1 124.19 128.25 132.05 134.24 141.73 148.29

2 16 113.19 115.83 117.30 123.71 126.36 130.44 135.52 141.67 148.95

2 32 102.11 103.82 107.42 111.17 115.26 119.25 124.83 131.27 137.62 X
2 64 108.41 111.00 113.56 119.59 122.80 128.07 132.46 140.32 148.01

4 4 76.75 78.41 78.54 81.20 82.18 84.35 85.64 89.07 92.84

4 8 73.86 73.98 75.67 76.42 78.86 79.68 81.98 85.51 89.21

4 16 75.89 75.89 76.68 79.22 80.05 82.40 84.23 87.19 90.35

4 32 63.23 64.21 65.56 67.59 69.16 71.24 73.21 76.97 81.46 X
4 64 68.92 69.58 71.51 72.97 73.25 77.32 79.67 82.50 86.03

6 8 82.88 83.57 82.40 85.13 85.66 87.03 89.68 92.11 95.46

6 16 69.71 70.44 70.35 70.28 72.87 74.23 75.05 76.98 79.90

6 32 55.14 55.59 56.93 57.94 59.52 60.39 62.54 65.48 67.68 X
6 64 59.89 60.70 60.35 62.19 62.20 64.75 64.82 67.82 71.23

8 8 55.09 55.58 55.21 56.56 56.26 57.08 57.69 59.00 61.01

8 16 54.32 54.67 54.88 54.30 56.51 56.60 57.31 58.58 60.60

8 32 42.60 43.41 43.56 44.42 45.81 45.32 47.60 48.45 50.24 X
8 64 46.07 45.80 46.55 47.19 48.30 48.03 50.89 51.76 54.34

10 16 49.37 49.70 49.79 50.37 51.06 51.88 52.17 53.38 54.97

10 32 40.71 41.84 41.29 41.69 42.27 42.97 43.68 43.84 46.21 X
10 64 41.10 41.38 41.63 42.33 42.29 43.12 43.97 45.08 46.32

12 16 44.81 43.64 44.23 44.40 45.39 45.95 46.95 48.22 49.22

12 32 36.48 36.83 37.55 37.67 37.73 38.44 38.91 39.43 40.68 X
12 64 38.64 37.86 39.29 39.07 39.62 39.58 39.59 40.65 42.19

Table 5.6: Energy (KJ) consumed during the execution of the PCG solver in sandy using different
number of threads and leaves for the range of available frequencies.

metric (provided the power dissipation remains constant), translates into a linear decrease of the
former. Following the sequence pattern for the evaluation, we thus fix the number of leaves in the
TDG to 32 for the discussion of the remaining two dimensions with sandy.

Frequency Figure 5.8 illustrates the fluctuations in the energy consumption when the processor
frequency is varied for each number of threads. In this experiment, the energy is normalized with
respect to that obtained with the lowest frequency for each number of threads. The graph reveals
a decrease in the energy consumption as the frequency is raised. The same trend already appeared
for the execution time, with the difference being more visible for the executions that employ a small
number of threads.

In order to explain this result, we remind that the energy efficiency is the product between power
dissipation and execution time. Thus, we also need to analyse the behaviour of the power with
respect to the variation of frequency in sandy. Figure 5.9 displays the variation of this metric while
executing the ILUPACK PCG solver in the range of frequencies. (The power rate is normalized
with respect to that obtained with the lowest frequency.) As we could expect, the power increases
with the frequency, but it grows at a lower pace than the reduction experienced by the execution
time, motivating the results obtained for the energy consumption. A definite source of the superior
energy efficiency of an execution that proceeds at higher frequencies on sandy is the considerable

117

CHAPTER 5. CHARACTERIZATION OF PROCESSOR ARCHITECTURES WITH ILUPACK PCG

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 w

.r
.t

 1
.2

 G
H

z

Frequency

Normalized Energy vs. Frequency

Threads=1
Threads=2
Threads=4
Threads=6
Threads=8

Threads=10
Threads=12

Figure 5.8: Energy consumption vs. frequency of the PCG solver in sandy using a TDG with
32 leaves. The energy is normalized with respect to that obtained with the lowest
frequency for each number of threads.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

N
o
rm

a
liz

e
d
 P

o
w

e
r

w
.r

.t
 1

.2
 G

H
z

Frequency

Normalized Power vs. Frequency

Threads=1
Threads=2
Threads=4
Threads=6
Threads=8

Threads=10
Threads=12

Figure 5.9: Power dissipation vs. frequency of the PCG solver in sandy using a TDG with 32
leaves. The power is normalized with respect to that obtained with the lowest frequency
for each number of threads.

idle power for this processor (see Table 5.4). In other words, it is preferrable to execute the solver
at the highest possible frequency to finish early and avoid the dissipation of power.

Thread-level parallelism From the two previous experiments concerning energy consumption, we
already selected the best number of leaves and optimal frequency. Once the parameters for these
two dimensions are fixed, we analyze the variation of the energy efficiency as a function of the
thread-level parallelism. Figure 5.10 reveals a considerable decrease in the energy consumption
when we increase the number of threads up to 8, but an stagnation from that point. A rough
inspection of the outcome from the analogous experiment from the point of view of performance in
Figure 5.6 explains this behaviour.

5.3 Characterization of A15 using ILUPACK PCG

We next repeat the efficiency analysis for the ARM Cortex-A15 multicore processor embedded in
the odroid development board. Compared with the high-performance but power-hungry Intel Xeon
socket, the A15 chip is designed for low power scenarios, yielding significantly different performance
and energy consumption behaviours, as we will expose. A second major difference between the Intel
Xeon server and the odroid is the quantity of RAM available in each platform. For the latter, the

118

5.3. CHARACTERIZATION OF A15 USING ILUPACK PCG

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

1 2 4 6 8 10 12

E
n
e
rg

y
 (

J)

Threads

Energy vs. Scalability

Figure 5.10: Energy consumption vs. scalability of the PCG solver in sandy using a TDG with
32 leaves. The experiments were run at the optimal frequency (2.0 GHz) for each
number of threads.

reduced amount of this resource constrains the experiments to operate with the problem instance
A100. This has an impact on the degree of task-parallelism that can be exposed via nested dissection
in the form of leaves in ILUPACK’s TDG.

5.3.1 Performance

Number of leaves Table 5.7 reports the execution time of ILUPACK PCG for the diverse config-
urations resulting from the combination of the three evaluation dimensions: number of leaves per
core, frequency, and number of threads. The results clearly identify a TDG with 8 leaves as the
best option for the parallel executions in this platform and, therefore, we select this value as the
reference for the subsequent discussions related to performance. As argued in the opening para-
graph of this section, the reduced dimension of the problem that fits into the RAM of the odroid
development board can only accommodate the data for the small A100 instance. In turn, this limits
the degree of concurrency of the problem, rapidly increasing the overhead of a TDG with a larger
number of leaves, and justifying the superior performance of the case with only 8 leaves.

Frequency Figure 5.11 illustrates the behaviour of the execution time when we vary the frequency
of the A15 cores for the different number of threads. As done earlier for this type of plot, the time
is normalized with respect to that obtained by the execution at the lowest frequency. The plot
reveals a considerable decrease of time from 0.2 GHz to 1.0 GHz. In contrast, for the interval
comprised between 1.0 GHz and 2.0 GHz, the reduction is almost negligible. This stagnation of the
execution time for the higher frequencies is due to the saturation of the memory bandwidth in this
architecture, and it is often visible for memory-bound computations. Nonetheless, although the
differences are small, the best option to maximize performance is to execute the code at 2.0 GHz.
Therefore, we select this frequency for the last experiment concerning performance.

Thread-level parallelism To complete the performance evaluation, Figure 5.12 assesses the scal-
ability in odroid using the ILUPACK PCG solver with the complete socket operating at the
maximum frequency. Here, we can identify a fair speed-up when the number of threads is increased
up to 4 (the maximum in the A15) despite the limited dimension of the problem.

119

CHAPTER 5. CHARACTERIZATION OF PROCESSOR ARCHITECTURES WITH ILUPACK PCG

Frequency (GHz)
Threads Leaves 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Optimal

1 1 90.43 97.74 106.08 117.32 131.67 152.98 184.83 238.24 346.28 692.40 X
1 2 96.61 104.32 113.83 126.30 142.14 165.48 200.80 259.37 378.54 752.20

1 4 93.93 101.83 111.82 124.12 140.61 163.95 199.82 259.64 380.67 760.42

1 8 91.71 99.68 108.87 121.59 137.98 161.15 196.80 256.51 377.20 751.36

1 16 101.62 113.93 121.71 132.96 149.79 174.84 212.60 277.48 407.18 803.71

1 32 99.95 109.89 120.76 135.40 154.38 182.28 224.34 294.62 435.61 877.99

1 64 117.92 128.41 140.93 157.88 180.34 212.97 262.22 344.67 511.56 1,028.46

2 2 53.53 57.29 61.77 67.89 75.67 87.28 104.83 134.71 195.46 385.71

2 4 52.16 56.00 60.52 66.78 74.81 86.64 104.40 134.70 196.08 388.39

2 8 51.01 54.64 59.37 65.61 73.17 84.64 102.94 133.08 194.68 383.73 X
2 16 57.8 61.15 65.29 71.63 79.12 91.52 110.36 143.36 208.50 409.17

2 32 55.02 58.92 64.14 71.30 80.84 94.51 115.22 150.12 221.77 444.06

2 64 63.51 68.56 74.27 82.46 93.31 109.47 133.73 175.10 260.13 520.05

4 4 32.23 33.99 36.08 39.13 42.69 48.51 57.80 73.29 105.23 203.66

4 8 32.06 33.66 35.85 38.85 41.86 47.75 56.78 71.93 103.68 200.12 X
4 16 36.23 37.91 39.9 41.71 45.84 52.03 61.56 78.07 108.95 214.44

4 32 34.28 36.37 38.51 42.18 46.14 52.97 62.96 80.96 117.12 233.62

4 64 40.67 42.77 45.15 48.95 53.68 61.55 73.69 94.30 137.98 272.45

Table 5.7: Execution time (s) of the PCG solver on odroid using different number of threads and
leaves for the range of available frequencies.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

N
o
rm

a
liz

e
d
 T

im
e
 w

.r
.t

 1
.2

 G
H

z

Frequency

Normalized Time vs. Frequency

Threads=1
Threads=2
Threads=4

Figure 5.11: Performance vs. frequency of the PCG solver on odroid using a TDG with 8 leaves.
The execution time is normalized with respect to that obtained with the lowest fre-
quency for each number of threads.

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4

T
im

e
 (

s)

Threads

Time vs. Scalability

Figure 5.12: Performance vs. scalability of the PCG solver in odroid using a TDG with 8 leaves.
The experiments were run at the optimal frequency (2.0 GHz) for each number of
threads.

120

5.3. CHARACTERIZATION OF A15 USING ILUPACK PCG

Frequency (GHz)
Threads Leaves 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Optimal

1 1 223.69 168.21 146.42 123.76 112.99 101.63 92.77 96.69 100.89 174.60 X
1 2 242.52 181.83 157.52 133.62 122.41 111.20 100.11 103.50 110.79 157.23

1 4 239.61 180.51 157.03 133.52 125.93 110.57 99.86 103.57 110.18 158.42

1 8 233.04 183.39 150.48 131.90 124.67 107.91 99.55 104.17 110.47 155.52

1 16 261.81 203.27 164.77 141.68 132.09 117.28 106.00 112.39 116.73 137.33

1 32 256.99 194.53 165.85 148.23 134.07 124.18 113.75 116.71 126.98 151.89

1 64 295.27 226.97 195.25 172.90 156.98 142.42 129.96 137.75 148.42 176.08

2 2 217.92 165.53 138.67 119.76 107.79 95.55 86.21 86.04 90.68 114.29

2 4 213.76 162.18 137.16 118.20 106.69 95.33 85.43 86.04 90.25 113.94

2 8 209.57 158.06 134.11 116.02 104.78 93.95 84.26 84.86 90.07 113.83 X
2 16 233.55 174.79 148.56 125.83 114.73 100.93 91.56 91.13 104.22 108.98

2 32 229.87 176.62 149.88 128.14 119.21 106.99 96.58 97.74 103.58 118.60

2 64 272.35 206.97 173.45 148.17 137.48 124.31 111.05 113.45 119.47 137.66

4 4 228.48 165.98 137.08 117.10 104.41 92.42 81.26 80.89 81.89 88.08

4 8 227.23 164.27 136.27 116.00 102.65 91.35 80.10 79.66 80.81 85.91 X
4 16 267.83 187.81 148.54 124.94 112.23 99.80 86.78 85.58 84.55 91.51

4 32 261.43 185.44 149.04 129.34 115.02 102.14 90.05 89.88 91.93 102.22

4 64 308.86 217.13 173.80 151.13 133.45 118.25 105.40 105.16 107.55 117.34

Table 5.8: Energy (J) consumed during the execution of the PCG solver in odroid using different
number of threads and leaves for the range of available frequencies.

5.3.2 Energy consumption

We complete the study of the A15 platform with the analysis of the energy efficiency of this
platform via the task-parallel solver underlying ILUPACK PCG. Before we commence this evalu-
ation, we note that the static power dissipation rate for odroid is very small. Consequently, we
can expect a different behaviour from that observed for sandy.

Number of leaves Table 5.8 exposes that the most energy-efficient executions are again obtained
using a TDG composed of 8 leaves for the parallel configurations, matching the results observed in
the performance study. As stated in that case, the reason for this behaviour is the reduced size of the
problem instance employed in the experiments. Concretely, the additional concurrency explicitly
exposed by further splitting the computational load/TDG does not compensate the overhead that
is introduced for such (small) problem dimension.

Frequency Figure 5.13 shows the relation in odroid between energy consumption and frequency
for the different number of threads. This architecture clearly exhibits a different behaviour com-
pared with sandy as the A15 saves energy when operating at lower frequencies. As argued, one of
the reasons for this result is the negligible static power in odroid. An additional cause is that the
higher frequencies collapse the memory bandwidth, as shown Figure 5.11, yielding no increase in
the performance for a (useless) higher power usage. This combination renders a frequency between
0.6 GHz and 0.8 GHz as the best option for the execution of ILUPACK PCG.

This is illustrated in more detail by Figure 5.14, which shows the evolution of the power dis-
sipation as the frequency is modified. The power curves there expose that the increase of power
is linearly proportional to that in frequency. This behaviour, together with that of time (see Fig-
ure 5.11), explains the superior energy efficiency at lower frequencies. Concretely, the reason is
that the difference of time between distinct frequencies is minor compared with the gap in power.
An orthogonal observation for this plot is that the power dissipation of odroid is much lower than
the power rate observed for sandy.

121

CHAPTER 5. CHARACTERIZATION OF PROCESSOR ARCHITECTURES WITH ILUPACK PCG

 0.5

 1

 1.5

 2

 2.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 w

.r
.t

 1
.2

 G
H

z

Frequency

Normalized Energy vs. Frequency

Threads=1
Threads=2
Threads=4

Figure 5.13: Energy consumption vs. frequency of the PCG solver in odroid using a TDG with
8 leaves. The energy is normalized with respect to that obtained with the lowest
frequency for each number of threads.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

N
o
rm

a
liz

e
d
 P

o
w

e
r

w
.r

.t
 1

.2
 G

H
z

Frequency

Normalized Power vs. Frequency

Threads=1
Threads=2
Threads=4

Figure 5.14: Power dissipation vs. frequency of the PCG solver in odroid using a TDG with
8 leaves. The power is normalized with respect to that obtained with the lowest
frequency for each number of threads.

122

5.4. GENERAL OBSERVATIONS

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4

E
n
e
rg

y
 (

J)

Threads

Energy vs. Scalability

Figure 5.15: Energy consumption vs. scalability of the PCG solver in odroid using a TDG with
8 leaves. The experiments were run at the optimal frequency (0.8 GHz) for each
number of threads.

200

300

400

500

600

700

800

900

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

T
im

e
 p

e
r

it
e
r

(s
)

Frequency (GHz)

Time vs Frequency/#cores

35

40

45

50

55

60

65

70

75

80

85

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

E
n
e
rg

y
 (

K
J)

Frequency (GHz)

Energy vs Frequency/#cores

4 Thr.
6 Thr.
8 Thr.

10 Thr.
12 Thr.

Figure 5.16: Time and energy consumption for the execution of ILUPACK PCG in sandy.

Thread-level parallelism To close the study of this architecture, Figure 5.15 displays the scalability
versus the energy efficiency in odroid, when executing the PCG solver at 0.8 GHz, which is the
optimal frequency from the perspective of energy. Here we can appreciate an important decrease
in energy consumption when the number of threads raises from 1 to 4, illustrating the benefits of
a parallel execution.

5.4 General Observations

As part of the dissertation, we performed a comprehensive evaluation of all the architectures
described in the first section of this chapter similar to those presented in the previous two sections.
In order to avoid an exhaustive list of figures and results, we next summarize them into a few
plots that illustrate the interplay between frequency/thread concurrency and performance/energy
consumption. In particular, Figures 5.16–5.20 report absolute values for the last two metrics against
processor frequency and number of threads. Note that these are the two hardware dimensions that
were targeted earlier this chapter. The third one (number of leaves per thread), depends on the
software, and is set for all these experiments to the optimal. To allow an easier visualization of the
differences, for those architectures with a large number of cores, we skip the results obtained with 1
and 2 cores as, in any case, they always offered worse performance and energy efficiency than other
configurations with a higher level of thread concurrency.

123

CHAPTER 5. CHARACTERIZATION OF PROCESSOR ARCHITECTURES WITH ILUPACK PCG

0

100

200

300

400

500

600

700

800

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

T
im

e
 p

e
r

it
e
r

(s
)

Frequency (GHz)

Time vs Frequency/#cores

60

80

100

120

140

160

180

200

220

240

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

E
n
e
rg

y
 (

K
J)

Frequency (GHz)

Energy vs Frequency/#cores

1 Thr.
2 Thr.
4 Thr.

Figure 5.17: Time and energy consumption for the execution of ILUPACK PCG in odroid.

500

1000

1500

2000

2500

3000

0.450 0.625 0.800 0.950 1.100

T
im

e
 p

e
r

it
e
r

(s
)

Frequency (GHz)

Time vs Frequency/#cores

450

500

550

600

650

700

750

800

850

0.450 0.625 0.800 0.950 1.100

E
n
e
rg

y
 (

K
J)

Frequency (GHz)

Energy vs Frequency/#cores

1 Thr.
2 Thr.

Figure 5.18: Time and energy consumption for the execution of ILUPACK PCG in juno.

500

600

700

800

900

1000

1100

1200

1.2 1.3 1.4 1.5 1.6

T
im

e
 p

e
r

it
e
r

(s
)

Frequency (GHz)

Time vs Frequency/#cores

40

45

50

55

60

65

70

1.2 1.3 1.4 1.5 1.6

E
n
e
rg

y
 (

K
J)

Frequency (GHz)

Energy vs Frequency/#cores

4 Thr.
6 Thr.
8 Thr.

10 Thr.
12 Thr.

Figure 5.19: Time and energy consumption for the execution of ILUPACK PCG in haswell.

0

100

200

300

400

500

600

700

800

900

1000

1.053

T
im

e
 p

e
r

it
e
r

(s
)

Frequency (GHz)

Time vs Frequency/#cores

0

10

20

30

40

50

60

70

80

90

100

1.053

E
n
e
rg

y
 (

K
J)

Frequency (GHz)

Energy vs Frequency/#cores

1 Thr.
2 Thr.
4 Thr.
8 Thr.

16 Thr.
32 Thr.
64 Thr.

Figure 5.20: Time and energy consumption for the execution of ILUPACK PCG in xeon phi.

124

5.4. GENERAL OBSERVATIONS

A collection of general remarks can be extracted from this experimental evaluation that empha-
size the differences between the performance-oriented architectures (Intel Xeon) and the low-power
processors (ARM):

Point of view of performance:

1. The optimal number of leaves is mostly determined by the problem size: a larger di-
mension allows additional levels of task-parallelism being exposed via nested dissection
without incurring into a costly overhead. In contrast, the number of leaves is basically
independent of the architeture class (performance-oriented versus low-power), frequency,
and number of threads. For the small and large problem instances (e.g., A100 versus
A318), the optimal number of leaves is, respectively, 8 and 32.

2. The execution time in general benefits from operating at a higher frequency and/or
using a larger number of cores. However, the differences may be small when the memory
bandwidth is saturated as the results for the low-power architecture demonstrate.

Point of view of energy consumption:

1. The optimal numbers of leaves match those obtained when the figure-of-merit is perfor-
mance. The same remarks specified for that case apply when the target metric is energy
consumption.

2. The optimal frequency is the highest one for the performance-oriented architectures but,
in general, a reduced level for the low-power processors. The reason for this behaviour
is twofold, and can be used to further distinguish the behaviour of the two types of
systems:

(a) Performance-oriented architectures exhibit a considerable static power rate so that
increasing the execution time is very costly. Contrarily, low-power processor do not
suffer from this drawback.

(b) Low-power processors tend to saturate the memory bandwidth rapidly as the fre-
quency is raised, yielding a negligible improvement of execution time for a linear
increase in the power dissipation rate. The consequence is a worse energy efficiency.

3. From the perspective of scalability, adding more cores is beneficial unless the memory
bandwidth is saturated. Once that threshold is surpassed, the increase in the dissipation
rate directly translates into higher energy costs.

125

CHAPTER 5. CHARACTERIZATION OF PROCESSOR ARCHITECTURES WITH ILUPACK PCG

126

CHAPTER 6

Conclusions

6.1 Concluding Remarks and Main Contributions

The main goal of the dissertation was the design, implementation, and evaluation of parallel
and energy-efficient iterative sparse linear system solvers for multicore processors, taking advantage
of the specific hardware features present in recent manycore architectures and accelerators such as
the Intel Xeon Phi.

This objective was motivated by the importance and cost of the solution of sparse linear systems
in key numerical simulations and big-data processing algorithms. In order to tackle this scenario, in
this dissertation we considered the solution of large sparse systems of linear equations using precon-
ditioned iterative methods based on Krylov subspaces. Concretely, we pursued the optimization of
the solvers supported by ILUPACK for their efficient execution on multicore processors and many-
core architectures. Due to the importance of energy consumption, as our HPC supercomputers
progress on the road to Exascale systems, we also addressed the energy-efficient dimension in the
implementation of ILUPACK solvers for sparse linear systems.

At the conclusion of this work, the main contributions of this dissertation are the following:

• The development of an automatic power-performance analysis framework to identify the power
bottlenecks during the execution of concurrent applications by comparing the performance
and C-state traces.

• The improvement of ILUPACK PCG method by leveraging task parallelism with OmpSs,
minimizing the changes to the legacy code. The parallelization scheme can be applied to
easily parallelize other ILU-type iterative solvers.

• The exploration of the interoperability between the message-passing MPI programming in-
terface and the OmpSs task-parallel programming model, that resulted in a hybrid version of
the PCG in ILUPACK for clusters of multicore processors.

• The elaboration of specialized implementations of the preconditioned iterative linear system
solver in ILUPACK for NUMA platforms and the Intel Xeon Phi.

• The characterization of the energy efficiency of distinct processor designs using the parallel
implementations of ILUPACK PCG.

127

CHAPTER 6. CONCLUSIONS

The following sections describe these contributions and summarize the corresponding conclu-
sions in further detail.

6.1.1 Automatic power-performance analysis framework

This dissertation developed and extended an integrated framework for power-performance anal-
ysis of parallel scientific workloads. The framework offers useful information on power and perfor-
mance for different kinds of parallel applications, from MPI codes that operate on moderate-scale
clusters, to multi-threaded applications that exploit the benefits of multicore+GPU platforms. In
addition, we also developed complementary modules to obtain fine-grain energy measurements
leveraging the power sensors and models integrated in recent architectures. Specifically, the power-
performance analysis framework obtains power/energy samples from RAPL sensors (MSR regis-
ters), GPU devices (NVML library) and Xeon Phi co-processors (MIC management library).

We also analyzed the use of power estimates offered by recent processor technology versus the
exploitation of a professional data acquisition system from National Instruments (NI). From this
study we concluded that the measurements captured from RAPL may produce an overhead due
to the fact that recording the power information can only be done from the same platform. This
issue could be mildly tackled by avoiding the use of the PMLib framework and reading the RAPL
sensors directly from the code. However, with these direct readings we cannot obtain power traces
to analyze the power-behaviour together with the performance.

Additionally, we introduced and evaluated a key complement to the PMLib framework that
consists in a powerful inspection tool that automatically identifies power sinks. The detection of
power-wasting events is based on a comparison between the application performance trace and the
C-state traces per core, and it is done in parallel. Moreover, the analyzer is flexible because allows
the user to choose the task types that correspond to “useful” work, and adjust parameters such
as the length of the analysis interval or the discrepancy threshold. This tool also offers statistical
information which can help to obtain an approximation of the energy-cost due to hotspots, and the
potential savings that a more power-friendly implementation can potentially yield.

As a result from this study, we provided a valuable framework to develop more energy-efficient
applications. This tool helps the programmer by identifying the power bottlenecks and the impact
of the power sinks. In particular, we used the framework to implement energy-aware HPC linear
algebra libraries, leveraging idle periods during the execution using dynamic frequency-voltage
scaling and avoiding busy-waits.

6.1.2 Task-parallel PCG method in ILUPACK

A contribution of this dissertation consisted in the extraction of task-level concurrency in the
PCG method implemented in ILUPACK for the solution of large-scale sparse linear systems. Ex-
ploiting the connection between sparse matrices and adjacency graphs, nested dissection can be
recursively applied to permute a sparse matrix, yielding a collection of diagonal blocks that are
linked to certain subgraphs and separators. This process produces a DAG defining the dependencies
between the diagonal blocks, where the subgraphs occupy the leaves and the separators correspond
to the internal nodes. In this work we used Metis to apply nested dissection, and modified the
parallel version of this software to generate not only the partition but also the DAG. Moreover, we
adjusted the original library to obtain a DAG with more leaves than processor cores (which was a
restriction of the original version of Metis).

The DAG determines the task parallelism during the computation with the preconditioner as
the nodes represent tasks and the arrows indicate data dependencies. This graph is traversed from

128

6.1. CONCLUDING REMARKS AND MAIN CONTRIBUTIONS

bottom-up and top-down during the computation of the preconditioner and its application. The
remaining operations on the PCG only involve the computation of the leaves, so that they can be
executed in parallel. This partitioning was used in the dissertation to implement tuned versions of
the PCG solver for shared-memory and distributed-memory architectures. A key advantage of the
designed task-parallel scheme is that it can be easily applied to other ILU-type iterative solvers.

6.1.3 ILUPACK for multicore

Our investigation exploited the task parallelism in ILUPACK PCG to design, develop, and
evaluate a new implementation of the solver for shared-memory processors using OmpSs. In this
version we take advantage of the task parallelism to create a “skeleton” structure that captures the
dependencies in the DAG corresponding to the most challenging operations in the method. This
information is passed to the OmpSs runtime which can then enforce a correct and efficient schedule
of the entire solver. This strategy offers two relevant advantages: the first is that it requires minor
changes to the legacy code for ILUPACK, and the second is that the numerical method/software
is decoupled from the runtime.

During the experimental evaluation we obtained performance traces and detected some execu-
tion features that could be improved. Particularly, we assigned priorities to the OmpSs tasks in
order to prioritize the execution of the costlier tasks (usually the leaves of the tree). Moreover, in
order to reduce the overhead due to the creation of a large amount of fine-grain tasks, we decided
to merge some of them, obtaining notable benefits.

6.1.4 Hybrid ILUPACK for clusters

A hybrid version of the PCG underlying ILUPACK, combining MPI and OmpSs, was provided
as a key contribution of this dissertation. This implementation explores the interoperability between
both programming models to unleash an efficient execution of the solver in clusters of multicore
processors. This approach leverages the task-parallel scheme to statistically map the tasks in the
top levels of the binary tree to the cluster nodes, fixing the inter-node communication pattern.
In addition, this mapping forces the partitioning of the tasks inside each node, completing the
remaining levels of the tree. The subtree corresponding to each node is then processed concurrently
via the OmpSs runtime system.

The degree of concurrency of the problem can be expanded by adding levels in the tree but,
after a careful experimental evaluation, we confirmed that, from a certain depth, this approach
incurs a relevant overhead. Therefore, we validated that the best compromise is to generate up to
two leaves per core, to allow the OmpSs scheduler to optimize the computation.

The experimental evaluation of the hybrid implementation of ILUPACK combining MPI+OmpSs
analyzed different combinations of the number of MPI ranks and OmpSs threads per node. This
study revealed that the best configuration matches the internal architecture of the cluster nodes.
Moreover, this analysis investigated the strong and weak scalability of the parallel solver for all the
configurations. A general conclusion from this study is that the new MPI+OmpSs version, with
the optimal configuration, outperforms a previous implementation for clusters, which was based on
MPI and could only process one leaf per MPI rank.

6.1.5 Tuning ILUPACK on manycore architectures

In order to efficiently execute the solver in NUMA platforms and the Intel Xeon Phi, we
presented two specialized implementations of ILUPACK PCG. Concretely, to develop these ap-
proaches, we introduced several improvements to tune the OmpSs version elaborated in this thesis

129

CHAPTER 6. CONCLUSIONS

and an existing MPI-based implementation. The optimizations included the exploitation of nested
parallelism, the correct mapping of threads to cores, and the accommodation of a NUMA-aware
execution.

The experimental analysis of these implementations was carried out in an Intel Xeon Phi accel-
erator with 60 cores and in a 64-core NUMA server from AMD. As a conclusion from this evaluation,
the experiments revealed that there exists ample task concurrency in the preconditioned solver em-
bedded into ILUPACK, showing notable speed-ups in both architectures. Furthermore, the direct
comparison between the parallel implementations exposed that they achieve similar residuals in
the computed solution for both architectures. However, if we compare the performance, the best
results are obtained for the AMD server.

6.1.6 Characterizing the efficiency of multicore and manycore processors

A side contribution of this dissertation was the analysis of the computational performance
and energy efficiency of servers equipped with the state-of-the-art general-purpose multicore pro-
cessors as well as accelerators like the Intel Xeon Phi. Following the recent introduction of the
HPCG benchmark as a reference for evaluating the performance of supercomputers, we adopted
ILUPACK to test performance and energy efficiency of multicore platforms. We note that HPCG
and ILUPACK share the same computational and data access patterns, being representative of
the performance that can be attained by todays’ supercomputers. In contrast, HPCG is a generic
benchmark, equipped with a serial and very simple preconditioner, compared with our task-parallel
version of ILUPACK PCG.

6.2 Related Publications

The scientific contributions of this thesis have been validated with several peer-reviewed pub-
lications in international conferences and journals. Each one of these contributions is supported
by, at least, one publication. The following subsections list the main publications derived from
the thesis. We divide them into papers directly related to the thesis’ topics and papers indirectly
related to them but with a certain connection to linear algebra operations and energy efficiency. For
the first group of publications, we provide a brief abstract of the main contents of the contribution.

6.2.1 Directly-related publications

Chapter 2. Automatic Power-Performance Analysis Framework

The first version of the PMLib framework for power-performance analysis was introduced
in [25]. In this paper we presented a framework that measures the power consumption of com-
mercial external AC meters and an internal DC wattmeter. Combined with the instrumentation
and visualization tools Extrae and Paraver, it produces a useful environment to identify sources
of power inefficiency. In [36] we extended this framework with support for new measurement de-
vices, with the most relevant being a commercial DAS from NI. We also defined the interface of
PMLib and introduced two modules to record information on processor states related to power
consumption (C-states and P-states). In [38, 39] we demonstrated the use of the framework, an-
alyzing different dense linear algebra algorithm implementations from the performance and power
consumption points of view. Finally, the key contribution of this chapter, the automatic tool to
detect power bottlenecks in parallel scientific applications, was presented in [37].

The following is a detailed list of the main publications related to this topic:

130

6.2. RELATED PUBLICATIONS

Conference

Proceedings
[25]

Alonso, P., Badia, R., Labarta, J., Barreda, M., Dolz, M., Mayo, R., Quintana-
Ort́ı, E., and Reyes, R. Tools for power-energy modeling and analysis of parallel scientific
applications. In 41st International Conference on Parallel Processing (ICPP) (2012), pp. 420–429.

Understanding power usage in parallel workloads is crucial to develop the energy-aware
software that will run in future Exascale systems. Workloads contribute towards this
goal by introducing an integrated framework to profile, monitor and analyze power
dissipation in parallel MPI and multi-threaded scientific applications. The framework
includes an own-designed device to measure internal DC power consumption and a
package offering a simple interface to interact with this design as well as commercial
wattmeters. Combined with the instrumentation package Extrae and the graphical
analysis tool Paraver, the result is a useful environment to identify sources of power
inefficiency directly in the source application code. For task-parallel codes, we also
offer a statistical software module that inspects the execution trace of the application
to calculate the parameters of an accurate model for the global energy consumption,
which can be then decomposed into the average power usage per task or the nodal power
dissipated per core.

Conference

Proceedings
[36]

Barrachina, S., Barreda, M., Catalán, S., Dolz, M. F., Fabregat, G., Mayo, R.,
and Quintana-Ort́ı, E. S. An integrated framework for power-performance analysis of parallel
scientific workloads. In 3rd International Conference on Smart Grids, Green Communications and
IT Energy-aware Technologies (ENERGY) (2013), 114–119.

The path towards Exascale systems will require to energetically address power con-
sumption of future high performance computing (HPC) workloads which, in turn, urges
for a better understanding of power usage. We present an evolved framework to trace
and analyze the power and energy consumption made by parallel scientific applications.
The framework includes i) a flexible and extensible design that enables easy integra-
tion of different types of power measurement devices and addition of new functionality;
ii) a new module that records information on processor states related to power con-
sumption; and iii) an improved power measurement device to monitor internal direct
current (DC) power consumption. This environment is thus revealed as a powerful yet
easy-to-use tool to investigate and progress on the development of energy-efficient HPC
applications.

Conference

Proceedings
[39]

Barreda, M., Dolz, M. F., Mayo, R., Quintana-Ort́ı, E. S., and Reyes, R. Binding
performance and power of dense linear algebra operations. In 10th IEEE International Symposium
on Parallel and Distributed Processing with Applications (ISPA) (2012), pp. 63–70.

We combine a powerful tracing framework with a power measurement setup to perform
a visual analysis of the computational performance and the power consumption of tuned
implementations for three key dense linear algebra operations: the LU factorization, the
Cholesky factorization, and the reduction to tridiagonal form. Our results using 6 and
12 cores of an AMD Opteron-based platform reveal the serial/concurrent phases of the
algorithms, and their connection to periods of low/high power consumption, as well as
the linear dependency between execution time and energy for this class of operations.

Conference

Proceedings
[38]

Barreda, M., Catalán, S., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. Tracing
the power and energy consumption of the QR factorization on multicore processors. In 12th

131

CHAPTER 6. CONCLUSIONS

International Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE) (2012), pp. 134–142.

We analyze the interaction between computational performance, power dissipation and
energy consumption of several high-performance implementations of the QR factoriza-
tion, a crucial matrix operation for the solution of linear systems of equations and linear
least squares problems. Our experimental results on a multiprocessor platform equipped
with recent multicore technology from AMD show the interaction between these three
factors.

Journal

[37]

Barreda, M., Catalán, S., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. Au-
tomatic detection of power bottlenecks in parallel scientific applications. In Computer Science -
Research and Development (2013), pp. 1–9.

In this paper we present an extension of the PMLib framework for power-performance
analysis that permits a rapid and automatic detection of power sinks during the ex-
ecution of concurrent scientific workloads. The extension is shaped in the form of a
multi-threaded Python module that offers high reliability and flexibility, rendering an
overall inspection process that introduces low overhead. Additionally, we investigate
the advantages and drawbacks of the RAPL power model, introduced in the Intel Xeon
“Sandy-Bridge” CPU, versus a data acquisition system from National Instruments.

Chapter 4. Exploiting Task-Parallelism in ILUPACK

The first implementation of the task-parallel PCG in ILUPACK resulting from this thesis was
presented in [13]. In that paper we described how to extract the task parallelism in ILUPACK,
and we introduced a parallel implementation for multicore processors with considerable levels of
thread concurrency using OmpSs. Later, in [12] we tuned the previous OmpSs implementation
and an existing MPI version for their efficient execution in NUMA platforms and the Intel Xeon
Phi. In addition, in the second paper we also investigated the mapping of the threads to cores
for both implementations on two manycore platforms. The interoperability between MPI and
OmpSs was studied in [14], yielding a hybrid version of the PCG solver for clusters. This work
motivated the analysis of the costs of the communications in the solver and the introduction of
several communication-avoiding strategies in [20].

The following is a detailed list of the main publications related to this topic:

Conference

Proceedings
[13]

Aliaga, J. I., Badia, R. M., Barreda, M., Bollhöfer, M., and Quintana-Ort́ı, E.
S. Leveraging task-parallelism with OmpSs in ILUPACK’s preconditioned CG method. 26th
Int. Symp. on Computer Architecture and High Performance Computing (SBAC-PAD) (2014),
pp. 262–269.

In this paper we describe how to efficiently exploit task parallelism for the solution of
sparse linear systems on multi-threaded processors via ILUPACK’s multi-level precon-
ditioned CG method. Using a pair of data structures, we capture the task dependencies
that appear in the two most challenging operations in the method (calculation of the
preconditioner and its application), passing this information to the OmpSs runtime
which can then implement a correct and efficient schedule of the entire solver.

Our results with high-end multicore platforms equipped with Intel and AMD processors
report significant performance gains, demonstrating that OmpSs provides an efficient

132

6.2. RELATED PUBLICATIONS

and close-to-seamless means to leverage the concurrency in a complex scientific code
like ILUPACK.

Journal

[12]

Aliaga, J. I., Badia, R. M., Barreda, M., Bollhöfer, M., Dufrechou, E., Ezzatti
P., and Quintana-Ort́ı, E. S. Exploiting task and data parallelism in ILUPACK’s precondi-
tioned CG solver on NUMA architectures and many-core accelerators. Parallel Computing (2016),
Vol.54, pp. 97–107.

We present specialized implementations of the preconditioned iterative linear system
solver in ILUPACK for Non-Uniform Memory Access (NUMA) platforms and the Intel
Xeon Phi and graphics accelerators. For the conventional x86 architectures, our ap-
proach exploits task parallelism via the OmpSs runtime as well as a message-passing
implementation based on MPI, respectively yielding a dynamic and static schedule of the
work to the cores, with different numeric semantics to those of the sequential ILUPACK.
For the graphics processor we exploit data parallelism by off-loading the computation-
ally expensive kernels to the accelerator while keeping the numeric semantics of the
sequential case.

Conference

Proceedings
[14]

Aliaga, J. I., Barreda, M., Bollhöfer, M., and Quintana-Ort́ı, E. S. Exploiting
task-parallelism in message-passing sparse linear system solvers using OmpSs. 22nd International
European Conference on Parallel and Distributed Computing (EURO-PAR) (2016), pp. 631–643.

We introduce a parallel implementation of the preconditioned iterative solver for sparse
linear systems underlying ILUPACK that explores the interoperability between the
message-passing MPI parallel programming interface and the OmpSs task-parallel pro-
gramming model. Our approach commences from the task dependency tree derived
from a multi-level graph partitioning of the problem, and statically maps the tasks in
the top levels of this tree to the cluster nodes, fixing the inter-node communication
pattern. This mapping induces a conformal partitioning of the tasks in the remain-
ing levels of the tree among the nodes, which are then processed concurrently via the
OmpSs runtime system.

The experimental analysis on a cluster with high-end Intel Xeon processors explores
several configurations of MPI ranks and OmpSs threads per process showing that, in
general, the best option matches the internal architecture of the nodes. The results also
report significant performance gains for the MPI+OmpSs version over the initial MPI
code.

Journal

[20]

Aliaga, J. I., Barreda, M., Flegar, G., Bollhöfer, M., and Quintana-Ort́ı, E. S.
Communication in task-parallel ILU-preconditioned CG solvers using MPI+OmpSs. Concurrency
and Computation: Practice and Experience (2016). In revision.

We target the parallel solution of sparse linear systems via iterative Krylov subspace-
based methods enhanced with ILU-type preconditioners on clusters of multicore proces-
sors. In order to tackle large-scale problems, we develop task-parallel implementations of
the classical iteration for the CG method, accelerated via ILUPACK and ILU(0) precon-
ditioners, using MPI+OmpSs. In addition, we integrate several communication-avoiding
(CA) strategies into the codes, including the butterfly communication scheme and Ei-
jkhout’s formulation of the CG method. For all these implementations, we analyze the
communication patterns and perform a comparative analysis of their performance and
scalability on a cluster consisting of 16 nodes.

133

CHAPTER 6. CONCLUSIONS

Chapter 5. Characterization of processor architectures with ILUPACK PCG

In [17] we employed a previous version of ILUPACK, which relied on an ad-hoc runtime based on
OpenMP, to investigate the benefits that an energy-aware implementation of that runtime produced
on the time-power-energy balance of the application. Furthermore, we proposed several simple yet
accurate power models that captured the variations of average power that result from the introduc-
tion of the energy-aware strategies as well as the impact of the P-states into ILUPACK’s runtime.
Additionally, in [19] we analyzed the performance and energy efficiency of the OmpSs version of
ILUPACK in different state-of-the-art general-purpose multicore processors and accelerators such
as the Intel Xeon Phi. These analysis allowed us to characterize the efficiency of the platforms.

The following is a detailed list of the main publications related to this topic:

Journal

[17]

Aliaga, J. I., Barreda, M., Dolz, M. F., Mart́ın, A. F., Mayo, R., and Quintana-
Ort́ı, E. S. Assessing the impact of the CPU power-saving modes on the task-parallel solution of
sparse linear systems. Cluster Computing (2013), Vol.17(4), pp. 1335-1348

We investigate the benefits that an energy-aware implementation of the runtime in
charge of the concurrent execution of ILUPACK —a sophisticated preconditioned iter-
ative solver for sparse linear systems— produces on the time-power-energy balance of
the application. Furthermore, to connect the experimental results with the theory, we
propose several simple yet accurate power models that capture the variations of aver-
age power that result from the introduction of the energy-aware strategies as well as
the impact of the P-states into ILUPACK’s runtime, at high accuracy, on two distinct
platforms based on multicore technology from AMD and Intel.

Journal

[19]

Aliaga, J. I., Barreda, M., Dufrechou, E., Ezzatti, P., Quintana-Ort́ı, E. S. Char-
acterizing the efficiency of multicore and manycore processors for the solution of sparse linear
systems. Computer Science - Research and Development (2015), Vol.31(4), pp. 175–183.

We analyze the efficiency of servers equipped with state-of-the-art general-purpose mul-
ticore processors as well as platforms based on accelerators such as graphics processing
units (GPUs) and the Intel Xeon Phi. Following the proposal recently advocated in the
High Performance Conjugate Gradient (HPCG) benchmark, we leverage for this pur-
pose efficient implementations of ILUPACK, a preconditioned solver for sparse linear
systems that comprises numerical kernels and data access patterns analogous to those
of HPCG. Our study analyzes the (computational) performance and energy efficiency,
with two different metrics for each: time/floating-point throughput for the former; and
energy/floating-point throughput-per-Watt for the latter.

6.2.2 Indirectly-related publications

A parallel research was performed into the energy-efficiency field to explore the use of energy in
some of the most relevant dense algebra routines and optimize them. In [18] we conducted a detailed
analysis of the sources of power dissipation and energy consumption during the execution of current
dense linear algebra kernels on multicore processors. In particular, by leveraging the RAPL, we
decomposed the power-energy duo into its core, RAM, and uncore components, performing a series
of illustrative experiments for a range of memory-bound to CPU-bound high performance kernels.
Additionally, we investigated the energy proportionality of these three architecture components for
the execution of linear algebra routines on a representative Intel Xeon socket.

134

6.3. OPEN RESEARCH LINES

In [15, 16] we analyzed the sources of power dissipation and energy consumption during the
execution of high performance dense linear algebra (DLA) kernels on multicore processors. More-
over, we proposed and evaluated several strategies to adapt the concurrency throttling (CT) and
the voltage-frequency setting (VFS) to obtain an energy-efficient execution of the DLA routine
dsytrd.

Finally, in [162] we performed an experimental evaluation of the impact that voltage-frequency
scaling and concurrency throttling exert on the energy consumption of the MPDATA algorithm, a
key component of the multiscale fluid model EULAG.

The following is a detailed list of the main publications related to that topic:

Journal

[18]

Aliaga, J. I., Barreda, M., Dolz, M. F., and S. Quintana-Ort́ı, E. S. Are our dense
linear algebra libraries energy-friendly? Time-Power-Energy Trade-Offs in BLAS and LAPACK.
Computer Science - Research and Development (2015), Vol.30(2), pp. 187–196.

Conference

Proceedings
[16]

Aliaga, J. I., Barreda M., Castaño A., Dolz M. F., and Quintana-Ort́ı, E. S.
Strategies for adapting concurrency throttling and dynamic voltage-frequency scaling for dense
eigensolvers. 15th International Conference on Computational and Mathematical Methods in Sci-
ence and Engineering (2015), Vol(1), pp. 76–80.

Journal

[15]

Aliaga, J. I., Barreda M., Castaño A., Dolz M. F., and Quintana-Ort́ı, E. S.
Adapting concurrency throttling and voltage-frequency scaling for dense eigensolvers. The Journal
of Supercomputing (2015), pp. 1–15.

Conference

Proceedings
[162]

Rojek, K., Barreda, M., Quintana-Ort́ı, E. S., Wyrzykowski, R. Energy consump-
tion of stencil-based MPDATA algorithms. 16th International Conference on Computational and
Mathematical Methods in Science and Engineering (2016), Vol(1), pp. 1104–1107.

6.3 Open Research Lines

This thesis fulfilled the general initial goal of designing, implementing and evaluating parallel
and energy-efficient iterative sparse linear system solvers for multicore processors and manycore
accelerators. During this research we identified some issues, which could become extensions of this
thesis. The following list details some of the research lines which deserve further investigation:

• We have detected severe workload imbalances in some scenarios during the execution of the
task-parallel versions of ILUPACK that affect the performance. A future research line is to
tackle this problem, with the purpose of rendering a faster execution. For this purpose, it will
be beneficial to decompose some of the computational kernels in the PCG iteration (especially
the SPMV) to expose further levels of task parallelism that can be then exploited by OmpSs.

• In our task-parallel implementations, the leaf tasks present ample parallelism. However, to
take advantage of that parallelism, the workload of the leaves should be well-adjusted and
distributed among the nodes. Consequently, it is necessary to generate better partitionings
of the solution of sparse matrices in order to balance the workload of the leaves. For this
goal, it may be necessary to parameterize ParMetis (or mt-Metis) in order to improve the
partitioning.

• We have realized that the concurrency that can be obtained in ILUPACK by expanding
the levels of the tree is limited. As a consequence, it is necessary to add another level of
concurrency to improve the scalability of the parallel solvers. Concretely, the current versions

135

CHAPTER 6. CONCLUSIONS

of ILUPACK invoke, at each level a “scalar” ILU. In contrast, a future approach should rely
on a “block-structured” ILU that invokes multi-threaded and cache-optimized level-3-BLAS,
making possible the efficient execution of ILUPACK on a few thousand cores.

• Related to energy efficiency, a future research line should evaluate the best frequency and
combination of MPI ranks/OmpSs threads, on different platforms, for the execution of each
operation (kernel) in the iterative PCG. With this information it is possible to define several
strategies to adapt the concurrency throttling and the voltage-frequency setting to obtain a
more energy-efficient execution of the solver.

136

6.3. OPEN RESEARCH LINES

137

CHAPTER 6. CONCLUSIONS

138

Acronyms

AC Alternating Current. 17, 19, 130

ACPI Advanced Configuration and Power Interface specification. 12, 16

AD Analog-to-Digital. 19

AINV Approximate INVerse. 6, 64, 65

AMG Algebraic MultiGrid. 6, 45, 66

AMR Adaptive Mesh Refinement. 74

API Application Programming Interface. 15, 17, 28, 83

BSC Barcelona Supercomputing Center. 12, 84

CG Conjugate Gradient. x, 4, 6, 41, 42, 44–48, 50, 51, 82, 132, 133

CPU Central Processing Unit. 16, 24, 25, 30, 34, 36, 38, 81, 82

CSC Compressed Sparse Column. 54, 61

CSR Compressed Sparse Row. 54, 61

CUDA Compute Unified Device Architecture. 14, 34, 36, 38, 83

DAG Directed Acyclic Graph. 77, 79–81, 87, 89, 92–95, 97, 98, 100, 101, 103, 105, 128, 129

DAS Data Acquisition System. 19, 29, 130

DC Direct Current. 17, 19, 29, 130, 131

DCT Dynamic Concurrency Throttling. 10

DIMM Dual In-line Memory Module. 30

DRAM Dynamic Random Access Memory. 24, 25, 110

139

Acronyms

DVFS Dynamic Voltage and Frecuency Scaling. 8, 10

FFT Fast Fourier Transform. 49

FPGA Field-Programmable Gate Array. 2

GPP general-purpose processors. xvii, 1, 2

GPU Graphics Processing Unit. 2, 11, 17, 24, 28, 36, 39, 82, 109–111

GUI Graphical User Interface. 12

HPC High Performance Computing. xvii, 2, 3, 11, 16, 19, 39, 84, 127, 128

HPCG High Performance Conjugate Gradient. 109, 130

HPP Heterogeneous Parallel Programming. 82

IC Incomplete Cholesky. 55, 76

ILDU Incomplete LDU. 64, 65, 68, 69

ILU Incomplete LU. xvii, 2, 5–7, 9, 41, 48–55, 58–61, 63, 65–69, 73, 76, 78, 80, 87, 106, 136

ILUC Incomplete LU Crout. 61, 63, 65, 67

IP Internet Protocol. 20

MIC Many Integrated Core. ix, 11, 24, 31, 112

MILU Modified ILU. 58

MMDO Multiple Minimum Degree Ordering. 76

MPI Message Passing Interface. xiii, 4–7, 9, 10, 14, 17, 39, 73, 74, 82–84, 93–99, 101, 103–107,
127–129, 132, 133, 136

MSR Model-Specific Register. ix, xiii, 21, 23–25, 29, 30, 32

MW MegaWatt. 2

ND Nested Disection. 75, 76

NI National Instruments. ix, xiii, 19, 23, 29, 30, 32, 130

NUMA Non-Uniform Memory Access. xvii, 9, 74, 84, 99–101, 103, 104, 107, 127, 129, 130, 132

NVML NVIDIA Management Library. ix, 11, 24, 28, 29, 39

OpenCL Open Computing Language. 14, 83

OpenMP Open Multi-Processing. 4, 6, 9, 14, 82, 83, 85

OS Operating System. 28

140

Acronyms

OSPM Operating System-directed configuration and Power Management. 16

PAPI Performance API. 15

PCG Preconditioned Conjugate Gradient. x, 10, 41, 51, 71, 73, 74, 80, 81, 85–87, 89, 90, 92–98,
100, 101, 103–107, 113, 114, 116, 117, 119, 121, 123, 127–130, 132, 135, 136

PDE Partial Differential Equation. 1, 2, 6, 41, 43, 45, 49, 55, 58, 65, 66, 68

PDU Power Distribution Unit. 19

PIC Peripheral Interface Controller. 19

PMAPI Performance Monitor API. 15

POSIX Portable Operating System Interface. 15

PSU Power Supply Unit. 19

RAM Random Access Memory. 34

RAPL Running Average Power Limit. ix, xiii, 11, 24–27, 29, 30, 32, 38, 39, 128

RaW Read-after-Write. 83, 86, 88, 89

SMP Symmetric Multi-Processing. 83

SNMP Simple Network Management Protocol. 19

SPD Symmetric Positive Definite. 7, 46, 49, 50, 55, 76, 85

SPMD Single Program Multiple Data. 84

TAG Task Acyclic Graph. 35

TDG Task Dependency Graph. xi, 114, 117, 119–123

USB Universal Serial Bus. 19, 29

VLSI Very-Large-Scale Integration. 1

WaR Write-after-Read. 83

WaW Write-after-Write. 83

WMI Windows Management Instrumentation. ix, 28, 30

141

Bibliography

[1] Haswell Architecture. Available at: http://www.hardwarecanucks.com/forum/

hardware-canucks-reviews/61451-intel-haswell-i7-4770k-i5-4670k-review-2.

html.

[2] OmpSs website. http://pm.bsc.es/ompss.

[3] Sandy Bridge Architecture. Available at: http://www.qdpma.com/systemarchitecture/

systemarchitecture_sandybridge.html.

[4] Xeon Phi Architecture. Available at: http://www.xicomputer.com/Solutions/Intel/

xeon_phi/.

[5] The Green500 list, 2016. Available at: http://www.green500.org.

[6] MUltifrontal Massively Parallel Solver (MUMPS 5.0.2) User’s Guide, 2016.

[7] The Top500 list, 2016. Available at: https://www.top500.org/.

[8] 40 Years of Microprocessor Trend Data. https://www.karlrupp.net/2015/06/

40-years-of-microprocessor-trend-data/, 2015.

[9] A. Knüpfer, H. Brunst, et al. The vampir performance analysis tool-set. Tools for High
Performance Computing (2008), 139–155.

[10] Alameldeen, A. R., Wagner, I., Chishti, Z., Wu, W., Wilkerson, C., and Lu, S.-L.
Energy-efficient cache design using variable-strength error-correcting codes. In Proceedings of
the 38th Annual International Symposium on Computer Architecture (New York, NY, USA,
2011), ISCA ’11, ACM, pp. 461–472.

[11] Albers, S. Energy-efficient algorithms. Commun. ACM 53 (May 2010), 86–96.

[12] Aliaga, J. I., Badia, R. M., Barreda, M., Bollhöfer, M., Dufrechou, E., Ezzatti,
P., and Quintana-Ort́ı, E. S. Exploiting task and data parallelism in ILUPACK’s precon-
ditioned CG solver on NUMA architectures and many-core accelerators. Parallel Computing
54 (2016), 97 – 107.

143

http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/61451-intel-haswell-i7-4770k-i5-4670k-review-2.html
http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/61451-intel-haswell-i7-4770k-i5-4670k-review-2.html
http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/61451-intel-haswell-i7-4770k-i5-4670k-review-2.html
http://pm.bsc.es/ompss
http://www.qdpma.com/systemarchitecture/systemarchitecture_sandybridge.html
http://www.qdpma.com/systemarchitecture/systemarchitecture_sandybridge.html
http://www.xicomputer.com/Solutions/Intel/xeon_phi/
http://www.xicomputer.com/Solutions/Intel/xeon_phi/
http://www.green500.org
https://www.top500.org/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

BIBLIOGRAPHY

[13] Aliaga, J. I., Badia, R. M., Barreda, M., Bollhöfer, M., and Quintana-Ort́ı,
E. S. Leveraging task-parallelism with OmpSs in ILUPACK’s preconditioned CG method.
In 26th Int. Symp. on Computer Architecture and High Performance Computing (SBAC-PAD
2014) (2014), pp. 262–269.

[14] Aliaga, J. I., Barreda, M., Bollhöfer, M., and Quintana-Ort́ı, E. S. Exploit-
ing task-parallelism in message-passing sparse linear system solvers using OmpSs. In 22nd
International European Conference on Parallel and Distributed Computing (Euro-Par 2016)
(2016), pp. 631–643.

[15] Aliaga, J. I., Barreda, M., Castaño, A., Dolz, M. F., and Quintana-Ort́ı, E. S.
Adapting concurrency throttling and voltage-frequency scaling for dense eigensolvers. The
Journal of Supercomputing (2015), 1–15.

[16] Aliaga, J. I., Barreda, M., Castaño, A., Dolz, M. F., and Quintana-Ort́ı, E. S.
Strategies for adapting concurrency throttling and dynamic voltage-frequency scaling for
dense eigensolvers. In 15th International Conference on Computational and Mathematical
Methods in Science and Engineering (Rota, Spain, 2015), vol. 1, pp. 76–80.

[17] Aliaga, J. I., Barreda, M., Dolz, M. F., Mart́ın, A. F., Mayo, R., and Quintana-
Ort́ı, E. S. Assessing the impact of the CPU power-saving modes on the task-parallel
solution of sparse linear systems. Cluster Computing 17, 4 (2014), 1335–1348.

[18] Aliaga, J. I., Barreda, M., Dolz, M. F., and Quintana-Ort́ı, E. S. Are our dense lin-
ear algebra libraries energy-friendly? Time-power-energy trade-offs in BLAS and LAPACK.
Computer Science - Research and Development 30, 2 (2015), 187–196.

[19] Aliaga, J. I., Barreda, M., Dufrechou, E., Ezzatti, P., and Quintana-Ort́ı, E. S.
Characterizing the efficiency of multicore and manycore processors for the solution of sparse
linear systems. Computer Science - Research and Development 31, 4 (2016), 175–183.

[20] Aliaga, J. I., Barreda, M., Flegar, G., Bollhöfer, M., and Quintana-Ort́ı, E. S.
Communication in task-parallel ILU-preconditioned CG solvers using MPI+OmpSs. Concur-
rency and Computation: Practice and Experience. In revision.

[21] Aliaga, J. I., Bollhöfer, M., Mart́ın, A. F., and Quintana-Ort́ı, E. S. Exploiting
thread-level parallelism in the iterative solution of sparse linear systems. Parallel Computing
37, 3 (2011), 183–202.

[22] Aliaga, J. I., Bollhöfer, M., Mart́ın, A. F., and Quintana-Ort́ı, E. S. Exploiting
thread-level parallelism in the iterative solution of sparse linear systems. Parallel Comput.
37, 3 (2011), 183–202.

[23] Aliaga, J. I., Bollhöfer, M., Mart́ın, A. F., and Quintana-Ort́ı, E. S. Paralleliza-
tion of multilevel ILU preconditioners on distributed-memory multiprocessors. In Applied
Parallel and Scientific Computing, K. Jónasson, Ed., vol. 7133 of Lecture Notes in Computer
Science. 2012, pp. 162–172.

[24] Aliaga, J. I., Dolz, M. F., Mart́ın, A. F., Mayo, R., and Quintana-Ort́ı, E. S.
Leveraging task-parallelism in energy-efficient ILU preconditioners. In ICT as Key Technology
against Global Warming, vol. 7453 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, pp. 55–63.

144

BIBLIOGRAPHY

[25] Alonso, P., Badia, R. M., Labarta, J., Barreda, M., Dolz, M. F., Mayo, R.,
Quintana-Orti, E. S., and Reyes, R. Tools for power-energy modelling and analysis
of parallel scientific applications. In 41st International Conference on Parallel Processing
(ICPP) (2012), pp. 420–429.

[26] Alonso, P., Dolz, M. F., Igual, F. D., Mayo, R., and Quintana-Ort́ı, E. S. Reduc-
ing energy consumption of dense linear algebra operations on hybrid CPU-GPU platforms. In
10th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA) (2012), pp. 56–62.

[27] Alonso, P., Dolz, M. F., Igual, F. D., Mayo, R., and Quintana-Ort́ı, E. S. Sav-
ing energy in the LU factorization with partial pivoting on multi-core processors. In 20th
Euromicro Conference on Parallel, Distributed and Network based Processing (PDP) (2012),
pp. 353–358.

[28] Alonso, P., Dolz, M. F., Igual, F. D., Mayo, R., and Quintana-Ort́ı, E. S. Runtime
scheduling of the LU factorization: Performance and energy. In Energy Efficiency in Large
Scale Distributed Systems, Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2013, pp. 153–167.

[29] Anzt, H., Dongarra, J., and Quintana-Ort́ı, E. S. Tuning stationary iterative solvers
for fault resilience. In Proceedings of the 6th Workshop on Latest Advances in Scalable Algo-
rithms for Large-Scale Systems (New York, NY, USA, 2015), ScalA ’15, ACM, pp. 1:1–1:8.

[30] Ashby, S., and et al. The opportunities and challenges of Exascale computing. Summary
Report of the Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee,
November 2010.

[31] Aupy, G., Benoit, A., Dufossé, F., and Robert, Y. Reclaiming the energy of a schedule:
models algorithms. Concurrency and Computation: Practice and Experience 25, 11 (2006),
1505–1523.

[32] Axelsson, O. Iterative Solution Methods. Cambridge University Press, New York, NY,
USA, 1994.

[33] Bacha, A., and Teodorescu, R. Dynamic reduction of voltage margins by leveraging
on-chip ecc in itanium ii processors. In ISCA (2013).

[34] Badia, R. M., Labarta, J., Marjanovic, V., Mart́ın, A. F., Mayo, R., Quintana-
Ort́ı, E. S., and Reyes, R. Symmetric rank-k update on clusters of multicore processors
with SMPSs. In Applications, Tools and Techniques on the Road to Exascale Computing,
vol. 22 of Advances in Parallel Computing, pp. 657–664.

[35] Balay, S., Buschelman, K., Eijkhout, V.and Gropp, W. D., Kaushik, D., Knepley,
M. G., McInnes, L. C., Smith, B. F., , and Zhang. PETSc User’s Manual. Tech. Rep
ANL-95/11 - Revision 3.7. Argone National Laboratory, 2016.

[36] Barrachina, S., Barreda, M., Catalán, S., Dolz, M. F., Fabregat, G., Mayo, R.,
and Quintana-Ort́ı, E. S. An integrated framework for power-performance analysis of
parallel scientific workloads. 3rd International Conference on Smart Grids, Green Commu-
nications and IT Energy-aware Technologies (ENERGY) (2013), 114–119.

145

BIBLIOGRAPHY

[37] Barreda, M., Catalán, S., Dolz, M. F., , Mayo, R., and Quintana-Ort́ı, E. S.
Automatic detection of power bottlenecks in parallel scientific applications. Computer Science
- Research and Development (2013), 1–9.

[38] Barreda, M., Catalán, S., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S.
Tracing the power and energy consumption of the QR factorization on multicore processors.
In 12th International Conference on Computational and Mathematical Methods in Science
and Engineering (CMMSE) (2012), pp. 134–142.

[39] Barreda, M., Dolz, M. F., Mayo, R., Quintana-Ort́ı, E. S., and Reyes, R. Binding
performance and power of dense linear algebra operations. In 10th IEEE International Sym-
posium on Parallel and Distributed Processing with Applications (ISPA) (2012), pp. 63–70.

[40] Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Ei-
jkhout, V., Pozo, R., Romine, C., and der Vorst, H. V. Templates for the solution of
linear systems: Building blocks for iterative methods, 2rd ed. SIAM, Philadelphia, PA, USA,
1994.

[41] Benzi, M., Meyer, C. D., and Tuma, M. A sparse approximate inverse preconditioner
for the conjugate gradient method. SIAM Journal on Scientific Computing 17, 5 (1996),
1135–1149.

[42] Benzi, M., and Tuma, M. A sparse approximate inverse preconditioner for nonsymmetric
linear systems. SIAM Journal on Scientific Computing 19, 3 (1998), 968–994.

[43] Bergman, K., and et al. Exascale computing study: Technology challenges in achieving
exascale systems. DARPA IPTO ExaScale Computing Study, 2008.

[44] Berzins, M., Luitjens, J., Meng, Q., Harman, T., Wight, C. A., and Peterson,
J. R. Uintah: A scalable framework for hazard analysis. In Proceedings of the 2010 TeraGrid
Conference (New York, NY, USA, 2010), TG ’10, ACM, pp. 3:1–3:8.

[45] Bollhöfer, M. A robust ILU with pivoting baased on monitoring the growth of the inverse
factors. Linear Algebra Appl. 338, 1-3 (2001), 201–218.

[46] Bollhöfer, M. A robust and efficient ILU that incorporates the growth of the inverse
triangular factors. SIAM Journal on Scientific Computing 25, 1 (2004), 86–103.

[47] Bollhöfer, M., Aliaga, J. I., Martın, A. F., and Quintana-Ort́ı, E. S. Encyclopedia
of parallel computing. Springer US, Boston, MA, 2011, ch. ILUPACK, pp. 917–926.

[48] Bollhöfer, M., Grote, M., and Schenk, O. Algebraic multilevel preconditioner for the
Helmholtz equation in heterogeneous media. SIAM J. Sci. Comput. 31, 5 (2009), 3781–3805.

[49] Bollhofer, M., Grote, M., and Schenk, O. Algebraic Multilevel Preconditioner for the
Helmhotz Equation in Heterogeneous Media. SIAM J. Sci. Comput. 31, 5 (2009), 3781–3805.

[50] Bollhöfer, M., and Saad, Y. On the relations between ILUs and factored approximate
inverses. SIAM Journal on Scientific Computing 24, 1 (2002), 219–237.

[51] Bollhöfer, M., and Saad, Y. Multilevel preconditioners constructed from inverse-based
ILUs. SIAM Journal on Scientific Computing 27, 5 (2006), 1627–1650.

146

BIBLIOGRAPHY

[52] Bollhöfer, M., Saad, Y., and Schenk, O. ILUPACK, vol. 2.1, preconditioning software
package. http://ilupack.tu-bs.de, 2006.

[53] Borkar, S., and Chien., A. A. The future of microprocessors. Communications of the
ACM 54, 5 (2011), 67–77.

[54] Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., and Don-
garra, J. DAGuE: A generic distributed DAG engine for high performance computing.
Parallel Comput. 38, 1-2 (Jan. 2012), 37–51.

[55] Brandt, A. Multi-level adaptive solutions to boundary-value problems. Mathematics of
Computation 31, 138 (1997), 333 –390.

[56] Brezinski, C. Projection methods for linear systems. 1996.

[57] Briggs, W., Henson, V., and McCormick, S. A. Multigrid tutorial, 2nd ed. Society for
Industrial and Applied Mathematics, 2000.

[58] Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonnald, J., and Menon, R.
Parallel programming in OpenMP. Morgan Kaufmann Publishers, 2001.

[59] Chapman, B., and van der Pas, R. Using OpenMP. Portable shared memory parallel
programming. Morgan Kaufmann Publishers, 2007.

[60] Chevalier, C., and Pellegrini, F. PT-SCOTCH: A tool for efficient parallel graph
ordering. Parallel Comput. 34, 6-8 (2008), 318–331.

[61] Chow, E., and Saad, Y. Experimental study of ILU preconditioners for indefinite matrices.
Journal of Computational and Applied Mathematics 86, 2 (1997), 387–414.

[62] CORMEN, T. H., LEISERSON, C. E., and RIVEST, R. L. Introduction to algorithms.
McGraw-Hill, New York, 1990.

[63] Davis, T. A. Direct methods for sparse linear systems. SIAM Publications, 2006.

[64] DEEP project home page. http://www.deep-project.eu/.

[65] Demmel, J., and Yelick, K. Communication avoiding (CA) and other innovative al-
gorithms. The Berkeley Par Lab: Progress in the Parallel Computing Landscape (2013),
243–250.

[66] Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E., and LeBlanc,
A. R. Design of ion-implanted MOSFET’s with very small physical dimensions, volume =
9, number = 5, year = 1974. IEEE Journal of Solid-State Circuits, 256–268.

[67] Diamos, G. F., and Yalamanchili, S. Harmony: An execution model and runtime for
heterogeneous many core systems. In Proc. 17th Int. Symp. High Performance Distributed
Computing (2008), HPDC ’08, pp. 197–200.

[68] Diaz, J., noz Caro, C. M., and no, A. N. A survey of parallel programming models and
tools in the multi and many-core era. IEEE Transactions on parallel and distributed systems
23, 8 (2012), 1369–1382.

147

http://ilupack.tu-bs.de
http://www.deep-project.eu/

BIBLIOGRAPHY

[69] Diouri, M. E. M., Dolz, M. F., Glück, O., Lefèvre, L., Alonso, P., Catalán,
S., Mayo, R., and Quintana-Ort́ı, E. S. Solving some mysteries in power monitoring
of servers: Take care of your wattmeters! In Energy Efficiency in Large Scale Distributed
Systems, Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 3–18.

[70] Dongarra, J., et al. The international exascale software project roadmap. International
Journal of High Performance Computing Applications 25, 1 (2011), 3–60.

[71] Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. A set of level 3 basic
linear algebra subprograms. ACM Trans. Math. Soft. 16, 1 (March 1990), 1–17.

[72] Duff, I. S., Erisman, A. M., and Reid, J. K. Direct methods for sparse matrices.
Clarendon Press, Oxford, 1986.

[73] Duff, I. S., and Koster, J. On algorithms for permuting large entries to the diagonal of
a sparse matrix. SIAM J. Matrix Anal. Appl., year = 2000, volume = 22, number = 4, pages
= 973–996 .

[74] Duran, A., Ferrer, R., Ayguadé, E., Badia, R. M., and Labarta, J. A proposal to
extend the OpenMP tasking model with dependent tasks. International Journal of Parallel
Programming 37, 3 (2009), 292–305.

[75] Duranton, M. et al. The HiPEAC vision for advanced computing in horizon 2020, 2013.

[76] EISENSTAT, S. C., SCHULTZ, M. H., and SHERMAN, A. H. Algorithms and data
structures for sparse symmetric gaussian elimination. SIAM Journal on Scientific Computing
2 (1981), 225–237.

[77] Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K., and Burger, D.
Dark silicon and the end of multicore scaling. In 38th Annual International Symposium on
Computer architecture - ISCA’11 (2011), pp. 365–376.

[78] et al., M. D. The HiPEAC vision. http://www.hipeac.net/roadmap. [retrieved: July,
2016].

[79] Extrae: User guide manual for version 2.5.1. http://www.bsc.es/computer-sciences/

performance-tools/trace-generation/extrae/extrae-user-guide.

[80] Feng, W.-c., Feng, X., and Ge, R. Green supercomputing comes of age. IT Professional
10, 1 (jan.-feb. 2008), 17 –23.

[81] Fuller, S. H., and Millett, L. I. The future of computing performance: Game over or
next level? In National Research Council of the National Academies (2011).

[82] Gaidamour, J., Hénon, P., and Saad, Y. HIOS user’s guide. INRIA. http://hips.

gforge.inria.fr/doc.html.

[83] Gantz, J., and Reinsel, D. Extracting value from chaos. IDC Iview, 1142 (2011), 9–10.

[84] Gautier, T., Lima, J. V. F., Maillard, N., and Raffin, B. Xkaapi: A runtime system
for data-flow task programming on heterogeneous architectures. In Proc. 2013 IEEE 27th
Int. Symp. on Parallel and Distributed Processing (2013), IPDPS ’13, pp. 1299–1308.

148

http://www.hipeac.net/roadmap
http://www.bsc.es/computer-sciences/performance-tools/trace-generation/extrae/extrae-user-guide
http://www.bsc.es/computer-sciences/performance-tools/trace-generation/extrae/extrae-user-guide
http://hips.gforge.inria.fr/doc.html
http://hips.gforge.inria.fr/doc.html

BIBLIOGRAPHY

[85] Gensh, R., Aalsaud, A., Rafiev, A., Xia, F., Iliasov, A., Romanovsky, A., and
Yakovlev, A. Experiments with the odroid-XU3 board. Tech. Rep. CS-TR-1471, Newcastle
University, May 2015.

[86] GEORGE, J. A., and LIU, J. W. Computer solution of large sparse positive definite
systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[87] GILBERT, J. R., and PEIERLS, T. Sparse partial pivoting in time proportional to
artithmetic operations. SIAM Journal on Scientific Computing 9 (1988), 862–874.

[88] Golub, G. H., and Loan, C. F. V. Matrix computations, 3rd ed. The Johns Hopkins
University Press, Baltimore, 1996.

[89] Grimshaw, A. S. Easy-to-use object-oriented parallel processing with Mentat. Computer
26, 5 (May 1993), 39–51.

[90] Gropp, W., Lusk, E., and Skjellum, A. Using MPI: Portable parallel programming with
the message-passing interface. The MIT Press, 1999.

[91] Gropp, W., Lusk, E., and Thakur, R. Using MPI-2: Advanced features of the message-
passing interface. The MIT Press, 1999.

[92] Gruber, R., and Keller, V. One Joule per GFlop for BLAS2 Now! In AIP Conference
Proceedings (2010), S. Theodore E., P. George, and T. Ch, Eds., vol. 1281, American Institute
of Physics, pp. 1321–1324.

[93] Gunnels, J. A., Gustavson, F. G., Henry, G. M., and van de Geijn, R. A. flame:
Formal linear algebra methods environment. ACM Transactions on Mathematical Software
27, 4 (2001), 422–455.

[94] Gupta, A. WSMP: Watson Sparse Matrix Package Part II - direct solution of general
systems. Version 16.06. IBM T. J. Watson Research Center, 2000. Last update June 2016.

[95] Gupta, A., and Avron, H. WSMP: Watson Sparse Matrix Package Part I - direct solution
of symmetric systems. Version 16.06. IBM T. J. Watson Research Center, 2000. Last update
June 2016.

[96] Gupta, A., and Avron, H. WSMP: Watson Sparse Matrix Package Part III - iterative
solution of sparse systems. Version 16.06. IBM T. J. Watson Research Center, 2007. Last
update June 2016.

[97] Hackbusch, W. Multi-grid methods and applications. Springer, 2003.

[98] Hageman, L. A., and Young, D. M. Applied iterative methods. Academic Press, 1981.

[99] Hagemann, M., and Schenk, O. Weighted matchings for preconditioning symmetric
indefinite linear systems. SIAM J. Sci. Comput. 28, 2 (2006), 403–420.

[100] Hassan, S. M., Yalamanchili, S., and Mukhopadhyay, S. Near data processing: Impact
and optimization of 3d memory system architecture on the uncore. In 2015 International
Symposium on Memory Systems (Memsys 2015) (October 2015).

[101] Hénon, P., Ramet, P., and Roman, J. PaStiX: A high-performance parallel direct solver
for sparse symmetric definite systems. Parallel Computing 28, 2 (2002), 301–321.

149

BIBLIOGRAPHY

[102] Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda,
T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T., Salinger,
A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M., Williams, A.,
and Stanley, K. S. An overview of the Trilinos project. ACM Trans. Math. Software 3,
33.

[103] Hestenes, M. R., and Stiefel, E. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards 49,6 (1952), 409–436.

[104] Hestenes, M. R., and Stiefel, E. Methods of conjugate gradients for solving linear
systems. J. Research Nat. Bur. Standards 49 (1952), 409–435.

[105] Hoemmen., M. Communication-avoiding Krylov subspace methods. PhD thesis, Berkeley,
2010. UMI Order No. GAX87-23080.

[106] Hogg, J. D., Reid, J. K., and Scott, J. A. Design of a multicore sparse Cholesky
factorization using DAGs. SIAM J. Sci. Comput. 32, 6 (Dec. 2010), 3627–3649.

[107] HP Corp., Intel Corp., Microsoft Corp., Phoenix Tech. Ltd., Toshiba Corp.
Advanced configuration and power interface specification, 2013. Revision 5.0a.

[108] Hwu, W., Keutzer, K., and Mattson, T. G. The concurrency challenge. IEEE Design
and Test of Computers 25, 4 (2008), 312–320.

[109] Hypre web page. http://computation.llnl.gov/projects/

hypre-scalable-linear-solvers-multigrid-methods/, 2016.

[110] ILUPACK project home page. http://ilupack.tu-bs.de.

[111] Intel. Intel math kernel library (mkl) 11.0. http://software.intel.com/en-us/

intel-mkl.

[112] Intel. Intel Xeon Phi coprocessor system software developers guide, 2014.

[113] Intel Corp. Intel Xeon processor. http://www.intel.com/xeon, 2012.

[114] Intel Corp. Intel 64 and IA-32 architectures software developer manual. Volume 3B: System
programming guide, Part 2, 2015.

[115] INTERTWinE project home page. http://www.intertwine-project.eu/.

[116] Karypis, G., and Kumar, V. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20, 1 (1998), 359–392.

[117] Karypis, G., and Kumar, V. A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering. J. Parallel Distrib. Comput. 48, 1 (1998), 71–95.

[118] Karypis, G., and Schloegel, K. ParMETIS: Parallel graph partitioning and sparse matrix
ordering library. Version 4.0. University of Minnesota, Department of Computer Science and
Engineering, Minneapolis, 2013.

[119] Kim, K., and Eijkhout, V. A parallel sparse direct solver via hierarchical dag scheduling.
ACM Trans. Math. Softw. 41, 1 (Oct. 2014), 3:1–3:27.

150

http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/
http://ilupack.tu-bs.de
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
http://www.intel.com/xeon
http://www.intertwine-project.eu/

BIBLIOGRAPHY

[120] Kunkel, J. HDTrace - a tracing and simulation environment of application and system
interaction. Tech. Rep. 2, Department of Informatics, Scientific Computing. Universität
Hamburg, 2011.

[121] Kuzmin, A., Luisier, M., and Schenk, O. Fast methods for computing selected elements
of the Greens function in massively parallel nanoelectronic device simulations. In Euro-Par
(2013), S. B. Heidelberg, Ed., vol. 8097, pp. 533–544.

[122] Lacoste, X., Faverge, M., Ramet, P., Thibault, S., and Bosilca, G. Taking ad-
vantage of hybrid systems for sparse direct solvers via task-based runtimes. Research Report
RR-8446, INRIA, Jan. 2014.

[123] LaSalle, D., and Karypis, G. Efficient nested dissection for multicore architectures.
21st International European Conference on Parallel and Distributed Computing (Euro-Par)
(2015), 467–478.

[124] Li, N., Saad, Y., and Chow, E. Crout versions of ILU for general sparse matrices. SIAM
Journal on Scientific Computing 25, 2 (2003), 716–728.

[125] Li, X. S. An overview of SuperLU: Algorithms, implementation, and user interface. ACM
Trans. Mathematical Software 31, 3 (2005), 302–325.

[126] Li, Z., Saad, Y., and Sosonkina, M. pARMS: a parallel version of the algebraic recursive
multilevel solver. Numerical Lin. Alg. W. Appl. 10 (2003), 485–509.

[127] Liu, J. W. H. Modification of the minimum-degree algorithm by multiple elimination. ACM
Trans. Math. Soft. (TOMS) 11, 2 (1985), 141–153.

[128] Lively, C., Taylor, V., Wu, X., Chang, H.-C., Su, C.-Y., Cameron, K., Moore, S.,
and Terpstra, D. E-amom: an energy-aware modeling and optimization methodology for
scientific applications. Computer Science - Research and Development 29, 3 (2014), 197–210.

[129] Ludwig, T. Editorial for the first international conference on energy-aware high performance
computing (EnA-HPC). Computer Science - Research and Development 25, 3 (2010), 123–
124.

[130] Luk, C.-K., Hong, S., and Kim, H. Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In Proc. 42nd Annual IEEE/ACM Int. Symp. on Mi-
croarchitecture (2009), MICRO 42, pp. 45–55.

[131] Mart́ın, A. F. Utilización del paralelismo multihebra en el precondicionado y la resolución
iterativa de sistemas lineales dispersos. PhD thesis, Universitat Jaume I, Castellón, 2010.

[132] Märtin, C. Multicore processors: Challenges, opportunities, emerging trends. In Poceedings
of Embedded World Conference 2014 (Feb. 2014).

[133] Mathew, T. Domain decomposition methods for the numerical solution of partial differen-
tial equations (Lecture notes in Computational Science and Engineering), 1st ed. Springer
Publishing Company, Incorporated, 2008.

[134] McCormick, S. F. Multigrid methods. SIAM Books, Philadelphia, PA, USA, 1987.

[135] METIS official home page. http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.

151

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

BIBLIOGRAPHY

[136] Mienik, M. CPU burn-in v1.01. http://www.cpuburnin.com/.

[137] Mittal, S. A survey of techniques for approximate computing. ACM Comput. Surv. 48, 4
(March 2016), 62:1–62:33.

[138] Montblanc project home page. http://www.montblanc-project.eu/.

[139] Moore, G. Cramming more components onto integrated circuits. Electronics 38, 18 (1965),
114–117.

[140] MPICH project home page. http://www.mpich.org/.

[141] Mucci, P. J., Browne, S., Deane, C., and Ho, G. PAPI: A portable interface to
hardware performance counters. In Department of Defense HPCMP Users Group Conference
(1999), pp. 7–10.

[142] MVAPICH project home page. http://mvapich.cse.ohio-state.edu/.

[143] NANOS project home page. http://research.ac.upc.edu/nanos.

[144] Netgen. NETGEN - automatic mesh generator. http://www.hpfem.jku.at/netgen, 2012.

[145] NVIDIA. NVML API reference manual, 2012.

[146] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture program-
ming guide, 2.3.1 ed., August 2009.

[147] Nvml: Nvidia management library. https://developer.nvidia.com/

nvidia-management-library-nvml.

[148] Official Website, P. P. L. Python. http://www.python.org/.

[149] OmpSs project home page. http://pm.bsc.es/ompss/.

[150] The OpenMP API specification for parallel programming. http://http://openmp.org/wp/
openmp-specifications/.

[151] OpenMPI project home page. https://www.open-mpi.org/.

[152] Pachecho, P. Parallel programming with MPI. Morgan Kaufmann Publishers, 1997.

[153] Paraver project. http://www.bsc.es/computer-sciences/performance-tools/paraver.

[154] pARMS: parallel Algebraic Recursive Multilevel Solvers. http://www-users.cs.umn.edu/

~saad/software/pARMS/.

[155] PETSc project home page. http://acts.nersc.gov/petsc.

[156] pynvml: Python bindings to the nvidia management library. https://pypi.python.org/

pypi/nvidia-ml-py/.

[157] Quarteroni, A. M., and Valli, A. Domain decomposition methods for partial differential
equations. Oxford University Press, 1999.

152

http://www.cpuburnin.com/
http://www.montblanc-project.eu/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://research.ac.upc.edu/nanos
http://www.hpfem.jku.at/netgen
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
http://pm.bsc.es/ompss/
http://http://openmp.org/wp/openmp-specifications/
http://http://openmp.org/wp/openmp-specifications/
https://www.open-mpi.org/
http://www.bsc.es/computer-sciences/performance-tools/paraver
http://www-users.cs.umn.edu/~saad/software/pARMS/
http://www-users.cs.umn.edu/~saad/software/pARMS/
http://acts.nersc.gov/petsc
https://pypi.python.org/pypi/nvidia-ml-py/
https://pypi.python.org/pypi/nvidia-ml-py/

BIBLIOGRAPHY

[158] Quintana-Ort́ı, G., Igual, F. D., Quintana-Ort́ı, E. S., and van de Geijn, R. A.
Solving dense linear systems on platforms with multiple hardware accelerators. In 14th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (2009), ACM,
pp. 121–130.

[159] Quintana-Ort́ı, G., Quintana-Ort́ı, E. S., van de Geijn, R. A., Zee, F. G. V.,
and Chan, E. Programming matrix algorithms-by-blocks for thread-level parallelism. ACM
Transactions on Mathematical Software 36, 3 (2009), 14:1–14:26.

[160] Ramet, P. PaStiX user’s manual. Institut National de Recherche en Informatique et Au-
tomatique (INRIA), 2013.

[161] R.D. Falgout, J. J., and Yang, U. The design and implementation of hypre, a library of
parallel high performance preconditioners. Numerical Solution of Partial Differential Equa-
tions on Parallel Computers 51 (2006), 267–294.

[162] Rojek, K., Barreda, M., Quintana-Ort́ı, E. S., and Wyrzykowski, R. Energy
consumption of stencil-based MPDATA algorithm. In 16th International Conference on
Computational and Mathematical Methods in Science and Engineering (Rota, Spain, 2016),
pp. 1104–1107.

[163] Rountree, B., Lownenthal, D. K., de Supinski, B. R., Schulz, M., Freeh, V. W.,
and Bletsch, T. Adagio: Making DVS practical for complex HPC applications. In Proceed-
ings of the 23rd International Conference on Supercomputing (New York, NY, USA, 2009),
ICS ’09, ACM, pp. 460–469.

[164] S. Shende, A. M. The TAU parallel performance system. International Journal of High
Performance Computing Applications 20, 2 (2006).

[165] Saad, Y. ILUT: A dual threshold incomplete ILU factorization. Numerical Linear Algebra
with Applications 1 (1994), 387–402.

[166] Saad, Y. Iterative methods for sparse linear systems, 3rd ed. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2003.

[167] Saad, Y., and Schultz, M. H. Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 3 (1986), 856–869.

[168] Saad, Y., and Suchomel, B. ARMS: An Algebraic Recursive Multilevel Solver for General
Sparse Linear Systems. Numer. Lin. Alg. w. Appl. 9, 5 (2002), 359–378.

[169] Sarood, O., Miller, P., Totoni, E., and Kale, L. V. Load balancing for high perfor-
mance computing data centers. IEEE Trans. Comput. 61, 12 (Dec. 2012), 1752–1764.

[170] Saxe, E. Power-efficient software. ACM Queue (2010).

[171] Schenk, O., Bollhöfer, M., and Römer, R. Awarded SIGEST paper: On large scale
diagonalization techniques for the Anderson model of localization. SIAM Review 50 (2008),
91–112.

[172] Schenk, O., and Gärtner, K. Solving unsymmetric sparse systems of linear equations
with PARDISO. Journal of Future Generation Computer Systems 20, 3 (2004), 475–487.

153

BIBLIOGRAPHY

[173] Schenk, O., and Gärtner, K. Parallel Sparse Direct Solver PARDISO: User guide version
5.0.0, 2014.

[174] SCOTCH official home page. http://www.labri.fr/perso/pelegrin/scotch/.

[175] Smith, B. F., Bjørstad, P. E., and Gropp, W. D. Domain decomposition: Parallel
multilevel methods for elliptic partial differential equations, 1st ed. Cambridge University
Press, New York, NY, USA, 1996.

[176] Sottile, M., Mattson, T. G., and Rasmussen, C. E. Introduction to concurrency in
programming languages, 1st ed. Chapman & Hall/CRC, 2009.

[177] StarPU project home page. http://runtime.bordeaux.inria.fr/StarPU/.

[178] Strakoš, Z., and Tichý, P. On error estimation in the Conjugate Gradient method and
why it works in finite precision computations. Electronic Trans. Numer. Anal. 13 (2002),
56–80.

[179] Strzodka, R., and Göddeke, D. Pipelined mixed precision algorithms on fpgas for fast
and accurate pde solvers from low precision components. In IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2006) (2006), pp. 259–268.

[180] Tan, L., Song, S. L., Wu, P., Chen, Z., Ge, R., and Kerbyson, D. J. Investigating
the interplay between energy efficiency and resilience in high performance computing. In
Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium
(Washington, DC, USA, 2015), IPDPS ’15, IEEE Computer Society, pp. 786–796.

[181] Trottenberg, U., Oosterlee, C., and Sch Auller, A. Multigrid. Academic Press,
2001.

[182] V.Pillet, J.Labarta, T.Cortes, and S.Girona. Paraver: A tool to visualize and analyze
parallel code. 18th World OCCAM and Transputer User Group Technical Meeting (1995).

[183] Watkins, D. S. Fundamentals of matrix computations, 2nd ed. John Wiley and Sons, inc.,
New York, 2002.

[184] What is C-state from DELL home page. http://www.dell.com/support/article/us/en/

04/QNA41893?c=us&l=en&s=bsd&cs=04%2Fit%2Fen.

[185] Xu, Q., Kim, N. S., and Mytkowicz, T. Approximate computing: A survey. IEEE
Design & Test 33, 1 (2016), 8–22.

[186] Yang, U. M. Algebraic multigrid methods – high performance preconditioners. Lecture
Notes in Computational Science and Engineering. Springer 51 (2006), 209–236.

[187] Zhu, X., Ge, R., Sun, J., and He, C. 3e: Energy-efficient elastic scheduling for inde-
pendent tasks in heterogeneous computing systems. Journal of Systems and Software 86, 2
(2013), 302 – 314.

[188] Zlatev, Z., and Waśniewski, J. PARASPAR: Parallel solvers for sparse linear algebraic
systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994, pp. 547–556.

154

http://www.labri.fr/perso/pelegrin/scotch/
http://runtime.bordeaux.inria.fr/StarPU/
http://www.dell.com/support/article/us/en/04/QNA41893?c=us&l=en&s=bsd&cs=04%2Fit%2Fen
http://www.dell.com/support/article/us/en/04/QNA41893?c=us&l=en&s=bsd&cs=04%2Fit%2Fen

	Introduction
	Motivation
	State-of-the-art
	Direct Solvers
	Iterative Solvers
	Direct and Iterative Solvers
	Energy Optimization

	Objectives
	Structure of the Document

	Automatic Power-Performance Analysis Framework
	Integrated Tools
	Instrumentation and visualization tools
	Advanced Configuration and Power Interface

	The PMLib Framework
	Hardware power sampling devices
	The PMLib library
	Module to detect power-related states

	Enrichment of PMLib
	Running Average Power Limit (RAPL)
	NVIDIA Management Library (NVML)
	MIC Management Library (libmicmgmt)
	Comparison of power sampling interfaces

	Automatic Detection of Power Sinks
	Operation and implementation
	Examples

	Concluding Remarks

	Solution of Large Sparse Linear Systems and ILUPACK
	Solving Sparse Linear Systems
	Classification of the solution methods
	The Conjugate Gradient method

	Preconditioned CG
	Introductory concepts of preconditioning
	Definition of PCG
	ILU Preconditioning Techniques

	ILUPACK
	Computation of the preconditioner
	Application of the preconditioner

	Exploiting Task-Parallelism in ILUPACK
	Task-Level Concurrency in the PCG Method
	Nested dissection
	Computation of the preconditioner
	The iterative PCG solve

	Parallel Programming Models
	OpenMP
	OmpSs
	MPI

	Setup and Test Cases
	Leveraging Task-Parallelism with OmpSs
	Task-parallel implementation using OmpSs
	Optimization and experimental results

	Exploiting Task-Parallelism with MPI + OmpSs
	Task-Parallel implementation with MPI+OmpSs
	Experimental results

	Tuning the Task-Parallel ILUPACK on Many-core Architectures
	OmpSs implementations
	MPI implementations
	Experimental results

	Concluding Remarks

	Characterization of Processor Architectures with ILUPACK PCG
	Target Multicore Architectures
	Intel Xeon E5-2620 (sandy)
	ARMv7 Cortex-A15 (A15)
	ARM Cortex-A57 (A57)
	Intel Xeon E5-2603v3 (haswell)
	Intel Xeon Phi (xeon phi)
	General setup

	Characterization of sandy using ILUPACK PCG
	Performance
	Energy consumption

	Characterization of A15 using ILUPACK PCG
	Performance
	Energy consumption

	General Observations

	Conclusions
	Concluding Remarks and Main Contributions
	Automatic power-performance analysis framework
	Task-parallel PCG method in ILUPACK
	ILUPACK for multicore
	Hybrid ILUPACK for clusters
	Tuning ILUPACK on manycore architectures
	Characterizing the efficiency of multicore and manycore processors

	Related Publications
	Directly-related publications
	Indirectly-related publications

	Open Research Lines

